cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A100291 Numbers of the form a^4 + b^3 with a, b > 0.

Original entry on oeis.org

2, 9, 17, 24, 28, 43, 65, 80, 82, 89, 108, 126, 141, 145, 206, 217, 232, 257, 264, 283, 297, 320, 344, 359, 381, 424, 472, 513, 528, 593, 599, 626, 633, 652, 689, 730, 745, 750, 768, 810, 841, 968, 985, 1001, 1016, 1081, 1137, 1256, 1297, 1304, 1323, 1332
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100271 (primes of the form a^4 + b^3).
Cf. A055394 (a^2 + b^3: contains this as subsequence), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Roots of 5th powers are listed in A300565 (z^5 = x^3 + y^4); see also A300564 (z^4 = x^2 + y^3) and A242183, A300566 (z^6 = x^4 + y^5), A300567 (z^7 = x^6 + y^5), A302174.

Programs

  • Mathematica
    lst={}; Do[p=a^4+b^3; If[p<2000, AppendTo[lst, p]], {a, 64}, {b, 256}]; Union[lst]
    With[{nn=20},Select[Union[#[[1]]^4+#[[2]]^3&/@Tuples[Range[20],2]],#<= nn^3+1&]] (* Harvey P. Dale, May 27 2020 *)
  • PARI
    is(n)=for(a=1, sqrtnint(n-1, 4), ispower(n-a^4, 3) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018
    
  • PARI
    list(lim)=my(v=List());for(b=1,sqrtnint(lim\=1,3), my(b3=b^3); for(a=1,sqrtnint(lim-b3,4), listput(v,a^4+b3))); Set(v) \\ Charles R Greathouse IV, Jul 26 2021

Extensions

Edited by M. F. Hasler, Apr 25 2018

A100292 Numbers of the form a^5 + b^2 with a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 36, 37, 41, 48, 50, 57, 65, 68, 81, 82, 96, 101, 113, 122, 132, 145, 153, 170, 176, 197, 201, 226, 228, 244, 247, 252, 257, 259, 268, 279, 288, 290, 292, 307, 321, 324, 325, 343, 356, 362, 364, 387, 393, 401, 412, 432, 439, 442, 468, 473
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100272 (primes of the form a^5 + b^2).
Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^2; If[p<1000, AppendTo[lst, p]], {a, 16}, {b, 1024}]; Union[lst]
  • PARI
    is(n, m=5)=for(a=1, sqrtnint(n-1, m), issquare(n-a^m) && return(a)) \\ M. F. Hasler, Apr 25 2018

A303375 Numbers of the form a^5 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 33, 65, 96, 244, 307, 730, 761, 972, 1025, 1088, 1753, 3126, 3189, 3854, 4097, 4128, 4339, 5120, 7221, 7777, 7840, 8505, 11872, 15626, 15657, 15868, 16649, 16808, 16871, 17536, 18750, 20903, 23401, 32432, 32769, 32832, 33497, 36864, 46657, 46688, 46899, 47680, 48393
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
This sequence is among others motivated by the hard-to-compute sequence A300567 = numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6).
See also A300567: numbers z such that z^7 = x^5 + y^6 for some x, y >= 1.

Programs

  • PARI
    is(n,k=5,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303375_vec(L=10^5,k=5,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L

Formula

a(n) >> n^(30/11). Probably this is the correct asymptotic order. - Charles R Greathouse IV, Jan 23 2025

A300566 Numbers z such that there is a solution to x^4 + y^5 = z^6 with x, y, z >= 1.

Original entry on oeis.org

8748, 10368, 342732
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2018

Keywords

Comments

Also in the sequence: 810000 = 2^4*3^4*5^4, 1361367 = 3^4*7^5, 3240000 = 2^6*3^4*5^4, 9335088 = 2^4*3^5*7^4, 25312500 = 2^2*3^4*5^7, 31505922 = 2*3^8*7^4, 43740000 = 2^5*3^7*5^4, 512578125 = 3^8*5^7, 1215000000 = 2^6*3^5*5^7, 1701708750 = 2*3^4*5^4*7^5, 2196150000 = 2^4*3*5^5*11^4, 2431012500 = 2^2*3^4*5^5*7^4, 4269246912 = 2^6*3^4*7^7, 4447203750 = 2*3^5*5^4*11^4, 36015000000 = 2^6*3*5^7*7^4, 48717927500 = 2^2*5^4*11^7, 75969140625 = 3^4*5^8*7^4, 91116682272 = 2^5*3^4*7^4*11^4. - Jacques Tramu, Apr 17 2018
Consider a solution (x,y,z) of x^4 + y^5 = z^6. For any m, (x*m^15, y*m^12, z*m^10) is also a solution. Reciprocally, if (x/m^15, y/m^12, z/m^10) is a triple of integers for some m, then this is also a solution. We call primitive a solution for which there is no such m > 1. - M. F. Hasler, Apr 17 2018
Observation: a(n) = A054744(n+38) = A257999(n+32), at least for 1 <= n <= 2 in both cases. - Omar E. Pol, Apr 17 2018
These relations hold only for n = 1 and 2. The next larger known term 342732 = 2^2*3*13^4 shows that in general the terms don't belong to A054744 nor A257999, although the earlier comment implies that each term gives rise to infinitely many non-primitive terms in A054744. - M. F. Hasler, Apr 19 2018
When S = a^4 + b^10/4 is a square, then z = b^5/2 + sqrt(S) is a solution, with x = a*z and y = b*z. All known solutions and further solutions 8957952, 10616832, 52200625, 216486432, ... are of this form (with rational a, b). - M. F. Hasler, Apr 19 2018

Examples

			a(1) = 8748 = 2^2*3^7 is in the sequence because 8748^6 = (2^3*3^8)^5 + (2^3*3^10)^4, using 2^3 + 1 = 3^2. Similarly, all z = 4*3^(10k-3) are in the sequence for k >= 1, with x = 8*3^(15k-5) and y = 8*3^(12k-4).
a(2) = 10368 = 2^7*3^4 is in the sequence because 10368^6 = (2^8*3^5)^5 + (2^10*3^6)^4, using 3 + 1 = 2^2. Similarly, any z = 2^7*3^(10k+4) is in the sequence for k >= 0, with x = 2^10*3^(15k+6) and y = 2^8*3^(12k+5).
z = 342732 = 2^2*3*13^4 is in the sequence because (2^2*3*13^4)^6 = (2^3*13^5)^5 + (2^3*5*13^6)^4, using 2^3*13 + 5^4 = 3^6.
z = 810000 = 2^4*3^4*5^4 is in the sequence because z^6 = x^4 + y^5 with x = 2^5*3^6*5^6 and y = 2^4*3^5*5^5 (using 1 + 3*5 = 2^4).
z = 1361367 = 3^4*7^5 is in the sequence because z^6 = x^4 + y^5 with x = 3^5*7^8 and y = 2*3^4*7^6.
		

Crossrefs

Cf. A300564 (z^4 = x^2 + y^3) and A242183, A300565 (z^5 = x^3 + y^4), A302174.
Cf. A100294: numbers of the form a^5 + b^4.
See A303266 for the y-values.

Programs

  • PARI
    is(z)=for(y=1,sqrtnint(-1+z=z^6,5),ispower(z-y^5,4)&&return(y))
    /* Code below for illustration only, not guaranteed to give a complete list. Half-integral values give the additional term 31505922 for b = 63/2. Third-integral values give the additional solution z = 342732 for b = 26/3. */
    S=[]; N=1e5; forstep(b=1,9,1/3, forstep(a=1,N,1/3, issquare(b^10+a^4<<2,&r)&& !frac(z=b^5/2+r/2)&& !print1(z",")&&S=setunion(S,[z])); print1([b])); S

A303374 Numbers of the form a^4 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 17, 65, 80, 82, 145, 257, 320, 626, 689, 730, 745, 810, 985, 1297, 1354, 1360, 2025, 2402, 2465, 3130, 4097, 4112, 4160, 4177, 4352, 4721, 4825, 5392, 6497, 6562, 6625, 7290, 8192, 10001, 10064, 10657, 10729, 14096, 14642, 14705, 15370, 15626, 15641, 15706, 15881
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^4 + b^2), A100291 (a^4 + b^3), A303372 (a^2 + b^6).
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form. Maybe the most efficient way is to consider decompositions of n into sums of two positive squares (see sum2sqr in A133388), and check if one of the terms is a third power and the other a fourth power.

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    Take[Flatten[Table[a^4+b^6,{a,20},{b,20}]]//Union,50] (* Harvey P. Dale, Jul 17 2025 *)
  • PARI
    is(n,k=4,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    is(n,L=sum2sqr(n))={for(i=1,#L,L[i][1]&&for(j=1,2,ispower(L[i][j],3)&&issquare(L[i][3-j])&&return(L[i][j])))} \\ See A133388 for sum2sqr(). Much faster than the above for n >> 10^30.
    A303374(L=10^5,k=4,m=6,S=[])={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),S=setunion(S,[a^m+b^k])));S}

A303372 Numbers of the form a^2 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 50, 65, 68, 73, 80, 82, 89, 100, 101, 113, 122, 128, 145, 164, 170, 185, 197, 208, 226, 233, 257, 260, 289, 290, 320, 325, 353, 362, 388, 401, 425, 442, 464, 485, 505, 530, 548, 577, 593, 626, 640, 677, 689, 730, 733, 738, 740, 745, 754, 765, 778
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of A055394, the numbers of the form a^2 + b^3.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.

Examples

			The first terms are 1^2 + 1^6 = 2, 2^2 + 1^6 = 5, 3^2 + 1^6 = 10, 4^2 + 1^6 = 17, 5^2 + 1^6 = 26, ..., 8^2 + 1^6 = 1^2 + 2^6 = 65, 2^2 + 2^6 = 68, 3^2 + 2^6 = 73, ...
		

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • PARI
    is(n,k=2,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303372_vec(L=10^5,k=2,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),listput(S,a^m+b^k)));Set(S)} \\ List of all terms up to limit L

A303373 Numbers of the form a^3 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 9, 28, 65, 72, 91, 126, 128, 189, 217, 280, 344, 407, 513, 576, 730, 737, 756, 793, 854, 945, 1001, 1064, 1072, 1241, 1332, 1395, 1458, 1729, 1792, 2060, 2198, 2261, 2457, 2745, 2808, 2926, 3376, 3439, 3473, 4097, 4104, 4123, 4160, 4221, 4312, 4439, 4608, 4825, 4914
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of the numbers of the form a^3 + b^2, A055394.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.

Examples

			The first terms are 1^3 + 1^6 = 2, 2^3 + 1^6 = 9, 3^3 + 1^6 = 28, 4^3 + 1^6 = 65, 2^3 + 2^6 = 72, 3^3 + 2^6 = 91, 5^3 + 1^6 = 126, 4^3 + 2^6 = 128, ...
		

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • PARI
    is(n,k=3,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303373_vec(L=10^5,k=3,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),listput(S,a^m+b^k)));Set(S)} \\ List of all terms up to limit L

A100274 Primes of the form a^5 + b^4 with a>0.

Original entry on oeis.org

2, 17, 113, 257, 499, 1297, 4339, 4421, 10177, 10243, 16823, 20903, 65537, 91297, 114641, 160001, 160243, 176807, 181787, 234499, 251063, 251233, 266027, 331777, 348583, 371549, 409709, 528673, 614657, 759631, 763471, 807281, 824911, 826807
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100294 (numbers of the form a^5 + b^4).

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^4; If[PrimeQ[p], AppendTo[lst, p]], {a, 16}, {b, 32}]; Union[lst]

A303376 Numbers of the form a^6 + b^7, with integers a, b > 0.

Original entry on oeis.org

2, 65, 129, 192, 730, 857, 2188, 2251, 2916, 4097, 4224, 6283, 15626, 15753, 16385, 16448, 17113, 17812, 20480, 32009, 46657, 46784, 48843, 63040, 78126, 78189, 78854, 82221, 93750, 117650, 117777, 119836, 124781, 134033, 195774, 262145, 262272, 264331, 278528, 279937
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

Examples

			The sequence starts with 1^6 + 1^7, 2^6 + 1^7, 1^6 + 2^7, 2^6 + 2^7, 3^6 + 1^7, 3^6 + 2^7, ...
		

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    With[{nn=40}, Take[Union[First[#]^6 + Last[#]^7&/@Tuples[Range[nn], 2]], nn]] (* Vincenzo Librandi, Apr 25 2018 *)
  • PARI
    is(n,k=6,m=7)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303376_vec(L=10^5,k=6,m=7,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L

A303377 Numbers of the form a^7 + b^8, with integers a, b > 0.

Original entry on oeis.org

2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

Examples

			The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
		

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6), A303376 (a^6 + b^7).

Programs

  • Mathematica
    With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
  • PARI
    is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Showing 1-10 of 10 results.