A300568
Numbers z such that z^8 = x^6 + y^7 for some integers x, y >= 1.
Original entry on oeis.org
47775744, 22143375000, 23328000000
Offset: 1
a(1) = 47775744 = 2^16*3^6 is in the sequence because for this (2^16*3^6)^8 =: z^8 = (12*z)^7 + (288*z)^6 = (2^18*3^7)^7 + (2^21*3^8)^6.
a(2) = 22143375000 and a(3) = 23328000000 are in the sequence because for these z, we have z^8 = (30*z)^7 + x^6 with x = 1350*z resp. x = 1800*z.
Cf.
A303376 (numbers of the form a^6 + b^7).
-
is(z)=for(y=1,sqrtnint(-1+z=z^8,7),ispower(z-y^7,6)&&return(y)) \\ returns the y-value (cf. A303268) if z is in this sequence, 0 else.
/* Code below for illustration only, not guaranteed to give a complete list. */
S=[]; N=1e5; forstep(b=1,99,1/2, forstep(a=1,N,1/2, issquare(b^14/4+a^6,&r)&& !frac(z=b^7/2+r)&& !print("\n*** "z)&& S=setunion(S,[z])); print1([b])); S
A303377
Numbers of the form a^7 + b^8, with integers a, b > 0.
Original entry on oeis.org
2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1
The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
-
With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
-
is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Showing 1-2 of 2 results.
Comments