cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300568 Numbers z such that z^8 = x^6 + y^7 for some integers x, y >= 1.

Original entry on oeis.org

47775744, 22143375000, 23328000000
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

Also in the sequence: 4001504141376, 4275897935643, 11284439629824, 100192997081088, ... (with b = 63, 51, 72, 96, ... cf. below).
Consider a solution (x,y,z) of x^6 + y^7 = z^8. For any m, (x*m^28, y*m^24, z*m^21) is also a solution. Reciprocally, if (x/m^28, y/m^24, z/m^21) is a triple of integers for some m, then this is also a solution. We call primitive a solution for which there is no such m > 1.
When S = a^6 + b^14/4 is a square, then z = b^7/2 + sqrt(S) is a solution, with x = a*z and y = b*z. All known solutions are of this form.
Sequence A303268 lists the y-values, in the above case equal to b*z where z = a(n), with corresponding x = a*z = (a(n)^8 - A303268(n)^7)^(1/6).

Examples

			a(1) = 47775744 = 2^16*3^6 is in the sequence because for this (2^16*3^6)^8 =: z^8 = (12*z)^7 + (288*z)^6 = (2^18*3^7)^7 + (2^21*3^8)^6.
a(2) = 22143375000 and a(3) = 23328000000 are in the sequence because for these z, we have z^8 = (30*z)^7 + x^6 with x = 1350*z resp. x = 1800*z.
		

Crossrefs

Cf. A300564 (z^4 = x^2 + y^3) and A242183, A300565 (z^5 = x^3 + y^4), A300566 (z^6 = x^4 + y^5), A300567 (z^7 = x^5 + y^6), A302174.
See A303268 for the y-values.
Cf. A303376 (numbers of the form a^6 + b^7).

Programs

  • PARI
    is(z)=for(y=1,sqrtnint(-1+z=z^8,7),ispower(z-y^7,6)&&return(y)) \\ returns the y-value (cf. A303268) if z is in this sequence, 0 else.
    /* Code below for illustration only, not guaranteed to give a complete list. */
    S=[]; N=1e5; forstep(b=1,99,1/2, forstep(a=1,N,1/2, issquare(b^14/4+a^6,&r)&& !frac(z=b^7/2+r)&& !print("\n*** "z)&& S=setunion(S,[z])); print1([b])); S

A303377 Numbers of the form a^7 + b^8, with integers a, b > 0.

Original entry on oeis.org

2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

Examples

			The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
		

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6), A303376 (a^6 + b^7).

Programs

  • Mathematica
    With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
  • PARI
    is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Showing 1-2 of 2 results.