cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303268 Least y for which x^6 + y^7 = A300568(n)^8 for some x > 1.

Original entry on oeis.org

573308928, 664301250000, 699840000000
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

The values listed here are the y-values corresponding to the z-values listed in A300568. The x-values are then readily computed as (z^8 - y^7)^(1/6).
See the main entry A300567 for all further information.

Examples

			A300568(1) = 47775744 is the smallest z such that z^8 = x^6 + y^7 for some x, y > 1, and the smallest such y is a(1) = 12*z = 573308928. It then follows that x = (47775744^8 - 573308928^7)^(1/6) = 13759414272 = 288*z.
A300568(2) = 22143375000 is the second smallest z such that z^8 = x^6 + y^7 for some x, y > 1, and the smallest corresponding y is a(2) = 30*z = 664301250000. It then follows that x = (22143375000^8 - 664301250000^7)^(1/6) = 29893556250000 = 1350*z.
Similarly, a(3) = 30*A300568(2) = 699840000000 is the smallest y for which x = (A300568(3)^8 - y^7)^(1/6) is an integer, here x = 1800*A300568(3) = 60*a(3).
		

Crossrefs

A302174 Smallest solution x of x^n + y^(n+1) = z^(n+2), x, y, z >= 1.

Original entry on oeis.org

1, 2, 27, 256, 472392, 262144, 13759414272, 4294967296, 4057816381784064
Offset: 0

Views

Author

Jacques Tramu, Apr 07 2018

Keywords

Comments

From M. F. Hasler, Apr 13 2018: (Start)
Proofs for the upper limits given in the formula section:
For odd n = 2k-1, x = 2^(2*k^2) yields a solution with x^(2k-1) = y^(2k) = 1/2*z^(2k+1), y = 2^(k(2k-1)) and z = 2^(2k(k-1)+1), because 2*k^2*(2k-1) + 1 = (2k+1)*(2k(k-1)+1).
For even n = 2k, x = 2^(k*(2k+1))*3^(2k+2) yields a solution, with y = 2^(2*k^2)*3^(2k+1) and z = 2^(2*k^2-k+1)*3^(2k), because for the exponents of 3, (2k+1)^2 = (2k+2)2k + 1 and the factor 1+3 = 2^2 adds 2 to the (identical) exponent of 2 in x^(2k) and y^(2k+1), to factor as 2*k^2(2k+1) + 2 = (2k+2)(k(2k-1)+1). (End)

Examples

			1^0 + 3^1 = 2^2, therefore a(0) = 1.
2^1 + 5^2 = 3^3, so a(1) = 2. (No solution can have x = 1 because z^3 - 1 = (z - 1)(z^2 + z + 1) cannot be a square: if a = z - 1, then z^2 + z + 1 = a^2 + 3a + 3 is congruent to 3 modulo any factor of a, and a = 3b yields z^3 - 1 = 9*b*(3*b^2 + 3b + 1), the last factor being congruent to 1 modulo any factor of b, and cannot be a square.)
27^2 + 18^3 = 9^4, so a(2) = 27.
256^3 + 64^4 = 32^5, so a(3) = 256.
472392^4 + 52488^5 = 8748^6, so a(4) = 472392.
		

Crossrefs

Cf. A001105 (2*k^2), A060757 (4^k^2 = 2^(2k^2)), A000244 (3^k).
Conjectured to be a subsequence of A003586 (2^i*3^j).
Cf. A300564, A300565, A300566, A300567, A300568 (z^4 = x^2 + y^3, ..., z^8 = x^6 + y^7).

Formula

For odd n, a(n) <= 2^((n+1)^2/2); for even n, a(n) <= 2^(n*(n+1)/2)*3^(n+2).
We may conjecture that, for n > 4, a(n) is given by these upper limits.

Extensions

Extended to a(0) = 1 by M. F. Hasler, Apr 13 2018
Showing 1-2 of 2 results.