Jacques Tramu has authored 14 sequences. Here are the ten most recent ones:
A304437
Least x > 0 such that x^2 + y^2 = N^N for some y > 0 and N = A230486(n) (= those N having such a solution).
Original entry on oeis.org
10, 7584, 3198598, 1240110271, 776601600000, 5917593031349125, 20762422068404224, 62654932136711087245, 1088221106880000000000, 1589976606572135812562944, 387094246891633853991317879, 6160133339397357294397161472000, 12456283074641193962390812908965, 441379799993599287569478479003906250
Offset: 1
-
for( n=1,199, if( t=sum2sqr(n^n), t[1][0]||(t=t[^1])||next;print1(t[1][1]","))) \\ See A133388 for sum2sqr().
-
from itertools import count, islice
from sympy import primefactors
from sympy.solvers.diophantine.diophantine import diop_DN
def A304437_gen(startvalue=2): # generator of terms
return map(lambda n:min(min(a,b) for a, b in diop_DN(-1,n**n) if a>0 and b>0), filter(lambda n:all(p&3==1 for p in primefactors(n)) if n&1 else any(p&3==1 for p in primefactors(n)),count(max(startvalue,2))))
A304437_list = list(islice(A304437_gen(),20)) # Chai Wah Wu, May 15 2023
A302990
a(n) = index of first odd prime number in the (n-th)-order Fibonacci sequence Fn, or 0 if no such index exists.
Original entry on oeis.org
0, 0, 4, 6, 9, 10, 40, 14, 17, 19, 361, 23, 90, 26, 373, 47, 288, 34, 75, 38, 251, 43, 67, 47, 74, 310, 511, 151534, 57, 20608, 1146, 62, 197, 94246, 9974, 287, 271172, 758
Offset: 0
a(2) = 4 because F2 (Fibonacci) = 0, 1, 1, 2, 3, 5, 8, ... and F2(4) = 3 is prime.
a(3) = 6 because F3 (tribonacci) = 0, 0, 1, 1, 2, 4, 7, 13, ... and F3(6) = 7 is prime.
a(4) = 9 because F4 (tetranacci) = 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, ... and F4(9) = 29 is prime.
From _M. F. Hasler_, Apr 18 2018: (Start)
We see that Fn(k) = 2^(k-n) for n <= k < 2n and thus Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043.
a(n) = 2n + 1 when 2^(n+1) - 3 is prime (n+1 in A050414) but 2^n-1 is not, i.e., n = 4, 8, 9, 11, 21, 23, 28, 93, 115, 121, 149, 173, 212, 220, 232, 265, 335, 451, 544, 688, 693, 849, 1735, ...
For other primes we have: a(29) = 687*30 - 2, a(37) = 20*38 - 2, a(41) > 10^4, a(43) > 10^4, a(47) = 5*48 - 1, a(53) = 53*54 - 2, a(59) = 307*60 - 2, a(67) = 6*67 - 1. (End)
Cf.
A001605 (indices of prime numbers in F2).
-
A302990(n,L=oo,a=vector(n+1,i,if(i1 && for(i=-2+2*n+=1,L, ispseudoprime(a[i%n+1]=2*a[(i-1)%n+1]-a[i%n+1]) && return(i))} \\ Testing primality only for i%n>n-3 is not faster, even for large n. - M. F. Hasler, Apr 17 2018; improved Apr 18 2018
A302174
Smallest solution x of x^n + y^(n+1) = z^(n+2), x, y, z >= 1.
Original entry on oeis.org
1, 2, 27, 256, 472392, 262144, 13759414272, 4294967296, 4057816381784064
Offset: 0
1^0 + 3^1 = 2^2, therefore a(0) = 1.
2^1 + 5^2 = 3^3, so a(1) = 2. (No solution can have x = 1 because z^3 - 1 = (z - 1)(z^2 + z + 1) cannot be a square: if a = z - 1, then z^2 + z + 1 = a^2 + 3a + 3 is congruent to 3 modulo any factor of a, and a = 3b yields z^3 - 1 = 9*b*(3*b^2 + 3b + 1), the last factor being congruent to 1 modulo any factor of b, and cannot be a square.)
27^2 + 18^3 = 9^4, so a(2) = 27.
256^3 + 64^4 = 32^5, so a(3) = 256.
472392^4 + 52488^5 = 8748^6, so a(4) = 472392.
Conjectured to be a subsequence of
A003586 (2^i*3^j).
A151986
Maximal number of moves in the glass worms (or vers de verres) game with n glasses before detecting a cycle.
Original entry on oeis.org
1, 2, 4, 7, 10, 13, 20, 22, 42, 43, 64, 65, 146, 147, 203, 239, 412, 413, 414, 415
Offset: 1
Edited and terms a(12) to a(20) from Sep 2009 discussion added by
Joseph Myers, Nov 12 2010
A151987
Number of legal starting configurations in the glass worms (or vers de verres) game with n glasses.
Original entry on oeis.org
1, 1, 3, 13, 64, 404, 2135, 21077, 111459, 1261637, 10767866, 111804384, 659105457, 18705101130
Offset: 0
Offset corrected by Joseph Myers, Sep 07 2009
A145065
a(n) = sum of primes <= n*10^9.
Original entry on oeis.org
24739512092254535, 95673602693282040, 211169315361937456, 370412807102643725, 572840944428163514, 818062002011808625, 1105720106635140803, 1435543734762318281, 1807310307011831228, 2220822432581729238, 2675837181777714162, 3172247016440147644
Offset: 1
a(1) = 2 + 3 + 5 + ... + 999999937 = 24739512092254535.
-
k = 1; p = 2; s = 0; lst = {}; While[k < 10, While[p < 10^9*k, s = s + p; p = NextPrime@p]; k++; AppendTo[lst, s]; Print[{k - 1, s}]] (* Robert G. Wilson v, Jul 23 2010 *)
-
A145065(n)=my(s=0);forprime(p=2,n*1e9,s+=p);s
A140489
Numbers that cannot be part of the trajectory of any number under repeated application of the map: n -> n + second-smallest number that does not divide n, unless they are the first term of the trajectory.
Original entry on oeis.org
1, 2, 3, 5, 12, 15, 17, 24, 27, 29, 35, 36, 39, 41, 45, 48, 51, 53, 60, 63, 65, 72, 75, 77, 84, 87, 89, 95, 96, 99, 101, 105, 108, 111, 113, 120, 123, 125, 132, 135, 137, 144, 147, 149, 155, 156, 159, 161, 165, 168, 171, 173, 180, 183, 185, 192, 195
Offset: 1
A140494
Numbers that cannot be part of the trajectory of any number under repeated application of the map: n -> n + third-smallest number that does not divide n, unless they are the first term of the trajectory.
Original entry on oeis.org
1, 2, 3, 4, 6, 12, 18, 24, 28, 30, 36, 37, 40, 42, 46, 48, 49, 52, 54, 55, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 97, 100, 102, 106, 108, 112, 114, 115, 120, 124, 126, 132, 133, 138, 144, 150, 156, 157, 160, 162, 166, 168, 172, 174, 175, 180, 184, 186, 192, 198, 200
Offset: 1
-
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}
f(n) = n + third(n);
canbe(n) = {for (k=1, n, if (k + third(k) == n, return (1));); return (0);}
cannotbe(n) = 1 - canbe(n);
lista(nn) = {for (n=1, nn, if (cannotbe(n), print1(n, ", ")););} \\ Michel Marcus, Oct 04 2018
A140493
Trajectory of 4 under repeated application of the map: n -> n + third-smallest number that does not divide n.
Original entry on oeis.org
4, 10, 16, 22, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275, 279, 284, 290, 296
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
-
NestList[Complement[Range[#+10],Divisors[#]][[3]]+#&,4,60] (* Harvey P. Dale, Aug 28 2023 *)
-
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}
f(n) = n + third(n);
lista4(nn) = {a = 4; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018
A140492
Trajectory of 3 under repeated application of the map: n -> n + third-smallest number that does not divide n.
Original entry on oeis.org
3, 8, 14, 19, 23, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
-
Join[{3},NestList[#+Complement[Range[#],Divisors[#]][[3]]&,8,50]] (* Harvey P. Dale, Apr 04 2015 *)
-
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}
f(n) = n + third(n);
lista3(nn) = {a = 3; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018
Comments