cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A000583 Fourth powers: a(n) = n^4.

Original entry on oeis.org

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921
Offset: 0

Views

Author

Keywords

Comments

Figurate numbers based on 4-dimensional regular convex polytope called the 4-measure polytope, 4-hypercube or tesseract with Schlaefli symbol {4,3,3}. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004
Totally multiplicative sequence with a(p) = p^4 for prime p. - Jaroslav Krizek, Nov 01 2009
The binomial transform yields A058649. The inverse binomial transforms yields the (finite) 0, 1, 14, 36, 24, the 4th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
Generate Pythagorean triangles with parameters a and b to get sides of lengths x = b^2-a^2, y = 2*a*b, and z = a^2 + b^2. In particular use a=n-1 and b=n for a triangle with sides (x1,y1,z1) and a=n and b=n+1 for another triangle with sides (x2,y2,z2). Then x1*x2 + y1*y2 + z1*z2 = 8*a(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) is the largest integer k such that k^4 + n is a multiple of k + n. Also, for n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n^2. - Derek Orr, Sep 04 2014
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
a(n+2)/2 is the area of a trapezoid with vertices at (T(n), T(n+1)), (T(n+1), T(n)), (T(n+1), T(n+2)), and (T(n+2), T(n+1)) with T(n)=A000292(n) for n >= 0. - J. M. Bergot, Feb 16 2018

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
  • Dov Juzuk, Curiosa 56: An interesting observation, Scripta Mathematica 6 (1939), 218.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 47.

Crossrefs

Programs

Formula

a(n) = A123865(n)+1 = A002523(n)-1.
Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001
G.f.: x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).
Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: (x + 7*x^2 + 6*x^3 + x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005
Sum_{k>0} 1/a(k) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009
a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4). [Worpitzky's identity for powers of 4. See, e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n*A177342(n) - Sum_{i=1..n-1} A177342(i) - (n - 1), with n > 1. - Bruno Berselli, May 07 2010
a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013
From Amiram Eldar, Jan 20 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/720 (A267315).
Product_{n>=2} (1 - 1/a(n)) = sinh(Pi)/(4*Pi). (End)

A000068 Numbers k such that k^4 + 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, 238, 242, 248, 254, 266, 272, 276, 278, 288, 296, 312, 320, 328, 334, 340, 352, 364, 374, 414, 430, 436, 442, 466
Offset: 1

Views

Author

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(n^4+1)]; // Vincenzo Librandi, Nov 18 2010
  • Mathematica
    Select[Range[10^2*2], PrimeQ[ #^4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    {a(n) = local(m); if( n<1, 0, for(k=1, n, until( isprime(m^4 + 1), m++)); m)};
    
  • PARI
    list(lim)=my(v=List([1])); forstep(k=2,lim,2, if(isprime(k^4+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    

Formula

1+a(n)^4 = A037896(n).

A037896 Primes of the form k^4 + 1.

Original entry on oeis.org

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001, 723394817, 916636177, 1049760001, 1416468497
Offset: 1

Views

Author

Donald S. McDonald, Feb 27 2000

Keywords

Comments

From Bernard Schott, Apr 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a perfect biquadrate: A307690, so this sequence is a subsequence of A078164 and A307690.
If p prime = k^4 + 1, phi(p) = k^4.
The last three Fermat primes in A019434 {17, 257, 65537} belong to this sequence; with F_k = 2^(2^k) + 1 and for k = 2, 3, 4, phi(F_k) = (2^(2^(k-2)))^4. (End)

Examples

			6^4 + 1 = 1297 is prime.
		

Crossrefs

Programs

  • Magma
    [n^4+1: n in [1..200] | IsPrime(n^4+1)]; // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    Select[Range[200]^4+1,PrimeQ] (* Harvey P. Dale, Jul 20 2015 *)
  • PARI
    j=[]; for(n=1,200, if(isprime(n^4+1),j=concat(j,n^4+1))); j
    
  • PARI
    list(lim)=my(v=List([2]),p); forstep(k=2,sqrtnint(lim\1-1,4),2, if(isprime(p=k^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    
  • Sage
    [n^4+1 for n in (1..200) if is_prime(n^4+1)] # G. C. Greubel, Apr 28 2019

Formula

a(n) = A002523(A000068(n)). - Elmo R. Oliveira, Feb 21 2025

Extensions

Corrected and extended by Jason Earls, Jul 19 2001

A269442 a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

Programs

  • GAP
    List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Table[Cyclotomic[17, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...

A060890 a(n) = n^8 + 1.

Original entry on oeis.org

1, 2, 257, 6562, 65537, 390626, 1679617, 5764802, 16777217, 43046722, 100000001, 214358882, 429981697, 815730722, 1475789057, 2562890626, 4294967297, 6975757442, 11019960577, 16983563042, 25600000001, 37822859362, 54875873537, 78310985282, 110075314177, 152587890626
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_16(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Programs

Formula

a(0)=1, a(1)=2, a(2)=257, a(3)=6562, a(4)=65537, a(5)=390626, a(6)=1679617, a(7)=5764802, a(8)=16777217, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Mar 12 2013
Sum_{n>=0} 1/a(n) = 1/2 + Pi*((sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi)) + (sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi) + sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi))) / 8 = 1.5040621333147995112929... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 + Pi*((sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi/2) - sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi/2)) / (cos(sqrt(2 - sqrt(2))*Pi/2) + cosh(sqrt(2 + sqrt(2))*Pi/2)) - (sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi/2) + sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi/2)) / (cos(sqrt(2 - sqrt(2))*Pi/2) - cosh(sqrt(2 + sqrt(2))*Pi/2)) + (sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi/2) - sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi/2)) / (cos(sqrt(2 + sqrt(2))*Pi/2) + cosh(sqrt(2 - sqrt(2))*Pi/2)) - (sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi/2) + sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi/2)) / (cos(sqrt(2 + sqrt(2))*Pi/2) - cosh(sqrt(2 - sqrt(2))*Pi/2)))/16 = 0.5037518217314416642671664241... . - Vaclav Kotesovec, Feb 14 2015
G.f.: (1-7*x+275*x^2+4237*x^3+15689*x^4+15563*x^5+4321*x^6+239*x^7+2*x^8)/ (1-x)^9. - Colin Barker, Apr 21 2012

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A255434 Product_{k=0..n} (k^4+1).

Original entry on oeis.org

1, 2, 34, 2788, 716516, 448539016, 581755103752, 1397375759212304, 5725048485492809488, 37567768161803815860256, 375715249386199962418420256, 5501222681512739849730509388352, 114078854746529686263861573186255424, 3258320249270380899068414253345827420288
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^4 + 1, {k, 0, n}], {n, 0, 15}]
    FoldList[Times,Range[0,15]^4+1] (* Harvey P. Dale, Nov 01 2022 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^4); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2 * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * n^(4*n+2) / exp(4*n).
a(n) ~ A258870 * (n!)^4. - Vaclav Kotesovec, May 16 2022

A100019 a(n) = n^4 + n^3 + n^2.

Original entry on oeis.org

0, 3, 28, 117, 336, 775, 1548, 2793, 4672, 7371, 11100, 16093, 22608, 30927, 41356, 54225, 69888, 88723, 111132, 137541, 168400, 204183, 245388, 292537, 346176, 406875, 475228, 551853, 637392, 732511, 837900, 954273, 1082368, 1222947
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 19 2004

Keywords

Comments

a(n) are the numbers m such that: j^2 = j + m + sqrt(j*m) with corresponding numbers j given by A002061(n+1), and with sqrt(j*m) = A027444(n) = n* A002061(n+1). - Richard R. Forberg, Sep 03 2013.

Crossrefs

Programs

Formula

From Indranil Ghosh, Apr 15 2017: (Start)
G.f.: -x(3 + 13x + 7x^2 + x^3)/(x - 1)^5
E.g.f.: exp(x)*x*(3 + 11x + 7x^2 + x^3)
(End)

A123656 a(n) = 1 + n^4 + n^6.

Original entry on oeis.org

3, 81, 811, 4353, 16251, 47953, 120051, 266241, 538003, 1010001, 1786203, 3006721, 4855371, 7567953, 11441251, 16842753, 24221091, 34117201, 47176203, 64160001, 85960603, 113614161, 148315731, 191434753, 244531251, 309372753, 387951931
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Crossrefs

Programs

  • Magma
    [1 + n^4 + n^6: n in [1..25]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[1 + n^4 + n^6, {n, 1, 50}] (* G. C. Greubel, Oct 17 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{3,81,811,4353,16251,47953,120051},30] (* Harvey P. Dale, May 10 2020 *)
  • PARI
    a(n)=1+n^4+n^6 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = 1 + n^4 + n^6.
G.f.: x*(3 +60*x +307*x^2 +272*x^3 +81*x^4 -4*x^5 +x^6)/(1-x)^7. - Colin Barker, May 25 2012

A059830 a(n) = n^6 + n^4 + n^2 + 1.

Original entry on oeis.org

1, 4, 85, 820, 4369, 16276, 47989, 120100, 266305, 538084, 1010101, 1786324, 3006865, 4855540, 7568149, 11441476, 16843009, 24221380, 34117525, 47176564, 64160401, 85961044, 113614645, 148316260, 191435329, 244531876, 309373429, 387952660, 482505745, 595531444
Offset: 0

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

Crossrefs

Programs

Formula

a(n) = (n^2+1)*(n^4+1) = A002522(n)*A002523(n) = A002522(n)*A002522(n^2). a(n) = (n^8-1)/(n^2-1) = -A024006(n)/A067998(n+1), n>1. - Alexander Adamchuk, Apr 13 2006
G.f.: -(4*x^6+57*x^5+309*x^4+274*x^3+78*x^2-3*x+1)/(x-1)^7. - Colin Barker, Nov 05 2012
Showing 1-10 of 33 results. Next