cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A269442 a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

Programs

  • GAP
    List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Table[Cyclotomic[17, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...

A102909 a(n) = Sum_{j=0..8} n^j.

Original entry on oeis.org

1, 9, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111, 235794769, 469070941, 883708281, 1589311291, 2745954241, 4581298449, 7411742281, 11668193551, 17927094321, 26947368421, 39714002329, 57489010371, 81870575521, 114861197401
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 01 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), this sequence (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..8]]): n in [0..30]]; // G. C. Greubel, Feb 13 2018
    
  • Mathematica
    1 + Sum[Range[0, 30]^j, {j, 1, 8}] (* G. C. Greubel, Feb 13 2018 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,9,511,9841,87381,488281,2015539,6725601,19173961},30] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    a(n)=n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [sum(n^j for j in (0..8)) for n in (0..30)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = (n^2+n+1) * (n^6+n^3+1) and so is never prime. - Jonathan Vos Post, Dec 21 2012
G.f.: (x^8 + 162*x^7 + 3418*x^6 + 14212*x^5 + 16578*x^4 + 5482*x^3 + 466*x^2 + 1)/(1-x)^9. - Colin Barker, Nov 05 2012, edited by M. F. Hasler, Dec 31 2012
a(n) = (n^9-1)/(n-1) with a(1) = 9. - L. Edson Jeffery and M. F. Hasler, Dec 30 2012
E.g.f.: exp(x)*(1 + 8*x + 247*x^2 + 1389*x^3 + 2127*x^4 + 1206*x^5 + 288*x^6 + 29*x^7 + x^8). - Stefano Spezia, Oct 03 2024

Extensions

Offset corrected by N. J. A. Sloane, Dec 30 2012

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A258805 Primes of the form k^8 + 1.

Original entry on oeis.org

2, 257, 65537, 37588592026706177, 92170395205042177, 147578905600000001, 284936905588473857, 3503536769037500417, 11007531417600000001, 11763130845074473217, 47330370277129322497, 50024641296100000001, 76872571987558646017, 416806419029812551937
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A002496, A037896.
Cf. A006314 (associated n), A060890.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is n^8+1];
    
  • Mathematica
    Select[Range[500]^8 + 1, PrimeQ]
  • PARI
    is(n)=ispower(n-1,8) && isprime(n) \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = A060890(A006314(n)). - Michel Marcus, Jun 11 2015

A258806 a(n) = n^7 + 1.

Original entry on oeis.org

1, 2, 129, 2188, 16385, 78126, 279937, 823544, 2097153, 4782970, 10000001, 19487172, 35831809, 62748518, 105413505, 170859376, 268435457, 410338674, 612220033, 893871740, 1280000001, 1801088542, 2494357889, 3404825448, 4586471425, 6103515626, 8031810177
Offset: 0

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A004864.
Sequences of the type n^k+1: A002522 (k=2), A001093 (k=3), A002523 (k=4), A002561 (k=5), A002604 (k=6), this sequence (k=7), A060890 (k=8).
Cf. A300785.

Programs

  • GAP
    List([0..30],n->n^7+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [n^7+1: n in [0..40]];
    
  • Magma
    I:=[1,2,129,2188, 16385,78126,279937,823544]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) -28*Self(n-6) + 8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Maple
    seq(n^7+1,n=0..30); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[n^7 + 1, {n, 0, 40}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 2, 129, 2188, 16385, 78126, 279937, 823544}, 40]
  • PARI
    a(n)=n^7+1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n^7+1 for n in (1..40)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: (1 - 6*x + 141*x^2 + 1156*x^3 + 2451*x^4 + 1170*x^5 + 127*x^6)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = (n + 1)*(n^6 - n^5 + n^4 - n^3 + n^2 - n + 1).
a(n) = Sum_{k=0..n} A300785(n,k). - Kolosov Petro, Oct 23 2018
E.g.f.: (1 +x +63*x^2 +301*x^3 +350*x^4 +140*x^5 +*21*x^6 +x^7)*exp(x). - G. C. Greubel, Oct 24 2018

A194003 Number of prime factors of n^8 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 2, 6, 2, 4, 3, 3, 2, 2, 2, 4, 3, 3, 2, 4, 6, 3, 2, 2, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 5, 2, 3, 2, 4, 4, 4, 3, 6, 2, 5, 2, 2, 2, 5, 2, 5, 4, 4, 3, 4, 3, 5, 4, 2, 3, 4, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 10 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1, and as A060890(n) = n^8+1 is to A002522(n) = n^2 + 1. a(n) = 1 when n^8+1 is prime, iff n is in {1, 2, 4} unless there is a larger Fermat prime than 65537.

Examples

			a(10) = 2 because 10^8 + 1 = 100000001 = 17 * 5882353 has 2 prime factors.
a(40) = 6 because 40^8 + 1 = 6553600000001 = 17^2 * 113 * 337 * 641 * 929 has 6 prime factors (with multiplicity) and is the smallest example not squarefree.
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^8+1)]:n in [1..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^8 + 1]][[2]]], {n, 50}]]
    PrimeOmega[Range[0,90]^8+1] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    a(n) = bigomega(n^8+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A060890(n)) = bigomega(n^8+1) or Omega(n^8+1)

A235983 Numbers n of the form p^8 + 1 (for prime p) such that n^8 + 1 is also prime.

Original entry on oeis.org

5764802, 146830437604322, 498311414318121122, 554786279519086052117762, 830149880552636599409282, 12628864335244989661982882, 33144490094099439467757602, 47203563969247823515902242, 179357590196404221918909122, 397370823547272766854136322, 2043714066708245412886790402, 139717795608648816763227344162
Offset: 1

Views

Author

Derek Orr, Jan 17 2014

Keywords

Comments

All numbers are congruent to 2 mod 20.

Examples

			33144490094099439467757602 = 1549^8 + 1 (1549 is prime) and 33144490094099439467757602^8 + 1 is prime, so 33144490094099439467757602 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[600]]^8+1,PrimeQ[#^8+1]&] (* Harvey P. Dale, Dec 21 2014 *)
  • Python
    import sympy
    from sympy import isprime
    {print(n**8+1) for n in range(10000) if isprime(n) if isprime((n**8+1)**8+1)}

A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).

Original entry on oeis.org

1, 5, 0, 4, 0, 6, 2, 1, 3, 3, 3, 1, 4, 7, 9, 9, 5, 1, 1, 2, 9, 2, 9, 0, 5, 4, 1, 7, 4, 5, 1, 1, 2, 7, 0, 7, 5, 2, 4, 5, 4, 1, 4, 3, 6, 3, 8, 2, 0, 3, 5, 1, 9, 7, 5, 4, 5, 8, 6, 3, 5, 3, 5, 7, 8, 1, 8, 8, 1, 2, 6, 9, 5, 1, 6, 4, 5, 6, 6, 3, 3, 4, 0, 7, 2, 0, 0, 6, 6, 1, 3, 9, 8, 5, 1, 6, 8, 4, 2, 8, 1, 8, 2, 4, 3
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Examples

			1.504062133314799511292905417451127075245414363820351975458635357818812...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^8 + 1))

Formula

Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8.
Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - Amiram Eldar, May 20 2022

A258809 a(n) = n^8 - 1.

Original entry on oeis.org

0, 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, 99999999, 214358880, 429981695, 815730720, 1475789055, 2562890624, 4294967295, 6975757440, 11019960575, 16983563040, 25599999999, 37822859360, 54875873535, 78310985280, 110075314175
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Cf. similar sequences listed in A258807.

Programs

  • Magma
    [n^8-1: n in [1..40]];
  • Mathematica
    Table[n^8 - 1, {n, 33}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720}, 40]

Formula

G.f.: x^2*(225 + 4535*x + 14595*x^2 + 18069*x^3 + 569*x^4 + 3999*x^5 - 2511*x^6 + 1079*x^7 - 270*x^8 + 30*x^9) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
a(n) = (n - 1)*(n + 1)*(n^2 + 1)*(n^4 + 1) = -A024006(n). [Bruno Berselli, Jun 12 2015]

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Views

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019
Showing 1-10 of 12 results. Next