A060885
a(n) = Sum_{j=0..10} n^j.
Original entry on oeis.org
1, 11, 2047, 88573, 1398101, 12207031, 72559411, 329554457, 1227133513, 3922632451, 11111111111, 28531167061, 67546215517, 149346699503, 311505013051, 617839704241, 1172812402961, 2141993519227, 3780494710543, 6471681049901, 10778947368421, 17513875027111, 27824681019587
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9), this sequence (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..10]]): n in [0..20]]; // G. C. Greubel, Apr 15 2019
-
A060885 := proc(n)
numtheory[cyclotomic](11,n) ;
end proc:
seq(A060885(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Join[{1},Table[Total[n^Range[0,10]],{n,20}]] (* Harvey P. Dale, Jun 19 2011 *)
-
a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 \\ Harry J. Smith, Jul 14 2009
-
a(n) = polcyclo(11, n); \\ Michel Marcus, Apr 06 2016
-
[sum(n^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
A102909
a(n) = Sum_{j=0..8} n^j.
Original entry on oeis.org
1, 9, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111, 235794769, 469070941, 883708281, 1589311291, 2745954241, 4581298449, 7411742281, 11668193551, 17927094321, 26947368421, 39714002329, 57489010371, 81870575521, 114861197401
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Mar 01 2005
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7), this sequence (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..8]]): n in [0..30]]; // G. C. Greubel, Feb 13 2018
-
1 + Sum[Range[0, 30]^j, {j, 1, 8}] (* G. C. Greubel, Feb 13 2018 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,9,511,9841,87381,488281,2015539,6725601,19173961},30] (* Harvey P. Dale, Feb 01 2025 *)
-
a(n)=n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..8)) for n in (0..30)] # G. C. Greubel, Apr 14 2019
A269446
a(n) = n*(n^6 + n^3 + 1)*(n^6 - n^3 + 1)*(n^2 + n + 1)*(n^2 - n + 1)*(n + 1) + 1.
Original entry on oeis.org
1, 19, 524287, 581130733, 91625968981, 4768371582031, 121871948002099, 1899815864228857, 20587884010836553, 168856464709124011, 1111111111111111111, 6115909044841454629, 29043636306420266077, 121826690864620509223, 459715689149916492091, 1583455585752214704241
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
Cf. similar sequences of the type Phi_k(n) listed in
A269442.
-
List([0..20], n-> n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
-
[n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1: n in [0..20]]; // G. C. Greubel, Apr 24 2019
-
Table[Cyclotomic[19, n], {n, 0, 15}]
-
a(n)=n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
-
[n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
A104376
a(n) = Sum_{j=0..13} n^j.
Original entry on oeis.org
1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274, 854769755812155, 2085209001813616, 4803839602528529, 10523614159962558, 22047845151887119
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 16 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12), this sequence (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..13]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
-
Table[1+Sum[n^j, {j,1,13}], {n,0,20}] (* G. C. Greubel, Apr 14 2019 *)
LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,14,16383,2391484,89478485,1525878906,15672832819,113037178808,628292358729,2859599056870,11111111111111,37974983358324,116719860413533,328114698808274},20] (* Harvey P. Dale, Sep 04 2023 *)
-
a(n)=sum(j=0,13, n^j) \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..13)) for n in (0..20)] # G. C. Greubel, Apr 14 2019
A104682
a(n) = Sum_{j=0..14} n^j.
Original entry on oeis.org
1, 15, 32767, 7174453, 357913941, 7629394531, 94036996915, 791260251657, 5026338869833, 25736391511831, 111111111111111, 417724816941565, 1400638324962397, 4265491084507563, 11966776581370171, 31278135027204241, 76861433640456465, 178901440719363487
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13), this sequence (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..14]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
-
With[{f=Total[n^Range[0,14]]},Table[f,{n,0,20}]] (* Harvey P. Dale, Jun 11 2011 *)
-
a(n) = sum(j=0, 14, n^j) \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..14)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
A105067
a(n) = Sum_{j=0..11} n^j.
Original entry on oeis.org
1, 12, 4095, 265720, 5592405, 61035156, 435356467, 2306881200, 9817068105, 35303692060, 111111111111, 313842837672, 810554586205, 1941507093540, 4361070182715, 9267595563616, 18764998447377, 36413889826860
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 05 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10), this sequence (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
A105312
a(n) = Sum_{j=0..15} n^j.
Original entry on oeis.org
1, 16, 65535, 21523360, 1431655765, 38146972656, 564221981491, 5538821761600, 40210710958665, 231627523606480, 1111111111111111, 4594972986357216, 16807659899548765, 55451384098598320, 167534872139182395, 469172025408063616, 1229782938247303441
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 30 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14), this sequence (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..15]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011 (modified by G. C. Greubel, Apr 14 2019)
-
a:= n-> add(n^k, k=0..15):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 04 2012
-
Prepend[Table[Total[n^Range[0,15]],{n,20}],1] (* Harvey P. Dale, Jan 19 2011 *)
-
vector(20, n, n--; sum(j=0,15, n^j)) \\ G. C. Greubel, Apr 14 2019
-
[sum(n^j for j in (0..15)) for n in (0..20)] # G. C. Greubel, Apr 14 2019
A266229
a(n) = Sum_{j=0..12} (-n)^j.
Original entry on oeis.org
1, 1, 2731, 398581, 13421773, 203450521, 1865813431, 12111126301, 61083979321, 254186582833, 909090909091, 2876892678661, 8230246567621, 21633936185161, 52914318216943, 121637191772461, 264917625139441, 550254335161441
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Cf. similar sequences of the type Phi_k(n) listed in
A269442.
-
List([0..20], n-> Sum([0..12], j-> (-n)^j)); # G. C. Greubel, Apr 24 2019
-
[(&+[(-n)^j: j in [0..12]]): n in [0..20]]; // G. C. Greubel, Apr 24 2019
-
Table[n^12-n^11+n^10-n^9+n^8-n^7+n^6-n^5+n^4-n^3+n^2-n+1, {n, 0, 17}]
Table[Cyclotomic[26, n], {n, 0, 17}]
-
a(n) = polcyclo(26, n); \\ Michel Marcus, Mar 13 2016
-
[sum((-n)^j for j in (0..12)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
A269483
a(n) = n^12 - n^11 + n^9 - n^8 + n^6 - n^4 + n^3 - n + 1.
Original entry on oeis.org
1, 1, 2359, 368089, 12783421, 196890121, 1822428931, 11898664849, 60247241209, 251393376241, 900900990991, 2855262053161, 8177824843189, 21515718297529, 52663539957211, 121132473843361, 263947231891441, 548461977100129
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Cf. similar sequences of the type Phi_k(n) listed in
A269442.
-
List([0..20], n-> n^12-n^11+n^9-n^8+n^6-n^4+n^3-n+1); # G. C. Greubel, Apr 24 2019
-
[n^12-n^11+n^9-n^8+n^6-n^4+n^3-n+1: n in [0..20]]; // Vincenzo Librandi, Feb 28 2016
-
Table[Cyclotomic[21, n], {n, 0, 17}]
CoefficientList[Series[(1 -12x +2424x^2 +337214x^3 +8182695x^4 +58741344 x^5 +156377856x^6 +168607380x^7 +73943271x^8 +12191420x^9 + 612600 x^10 +5406x^11 +x^12)/(1-x)^13, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 28 2016 *)
-
a(n) = polcyclo(21, n); \\ Michel Marcus, Feb 29 2016
-
A269483_list, m = [], [479001600, -2674425600, 6386688000, -8501915520, 6889478400, -3482100720, 1080164160, -194177280, 17948256, -666714, 5418, 0, 1]
for _ in range(10**2):
A269483_list.append(m[-1])
for i in range(12):
m[i+1] += m[i] # Chai Wah Wu, Feb 28 2016
-
[n^12-n^11+n^9-n^8+n^6-n^4+n^3-n+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
A269486
a(n) = Sum_{j=0..10} (-n)^j.
Original entry on oeis.org
1, 1, 683, 44287, 838861, 8138021, 51828151, 247165843, 954437177, 3138105961, 9090909091, 23775972551, 57154490053, 128011456717, 269971011311, 540609741211, 1034834473201, 1903994239313, 3382547898907, 5824512944911
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Cf. similar sequences of the type Phi_k(n) listed in
A269442.
-
List([0..20], n-> Sum([0..10], j-> (-n)^j)); # G. C. Greubel, Apr 24 2019
-
[n^10-n^9+n^8-n^7+n^6-n^5+n^4-n^3+n^2-n+1: n in [0..30]]; // Vincenzo Librandi, Feb 29 2016
-
Table[Cyclotomic[22, n], {n, 0, 19}]
CoefficientList[Series[(1 -10x +727x^2 +36664x^3 +389434x^4 +1233508x^5 + 1365310 x^6 +534568x^7 +66661x^8 +1926x^9 +11x^10)/(1-x)^11, {x,0,33}], x] (* Vincenzo Librandi, Feb 29 2016 *)
-
a(n) = polcyclo(22, n); \\ Michel Marcus, Feb 28 2016
-
[sum((-n)^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
Showing 1-10 of 13 results.
Comments