cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A198300 Square array M(k,g), read by antidiagonals, of the Moore lower bound on the order of a (k,g)-cage.

Original entry on oeis.org

3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 17, 14, 7, 8, 12, 26, 26, 22, 8, 9, 14, 37, 42, 53, 30, 9, 10, 16, 50, 62, 106, 80, 46, 10, 11, 18, 65, 86, 187, 170, 161, 62, 11, 12, 20, 82, 114, 302, 312, 426, 242, 94, 12, 13, 22, 101, 146, 457, 518, 937, 682, 485, 126, 13
Offset: 1

Views

Author

Jason Kimberley, Oct 27 2011

Keywords

Comments

k >= 2; g >= 3.
The base k-1 reading of the base 10 string of A094626(g).
Exoo and Jajcay Theorem 1: M(k,g) <= A054760(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized n-gon of order k - 1.

Examples

			This is the table formed from the antidiagonals for k+g = 5..20:
3   4   5   6    7    8    9     10    11    12    13    14    15   16  17 18
4   6  10  14   22   30    46    62    94   126   190   254   382  510 766
5   8  17  26   53   80   161   242   485   728  1457  2186  4373 6560
6  10  26  42  106  170   426   682  1706  2730  6826 10922 27306
7  12  37  62  187  312   937  1562  4687  7812 23437 39062
8  14  50  86  302  518  1814  3110 10886 18662 65318
9  16  65 114  457  800  3201  5602 22409 39216
10 18  82 146  658 1170  5266  9362 42130
11 20 101 182  911 1640  8201 14762
12 22 122 222 1222 2222 12222
13 24 145 266 1597 2928
14 26 170 314 2042
15 28 197 366
16 30 226
17 32
18
		

References

  • E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo, Sect. 1A, 20 (1973) 191-208.
  • R. M. Damerell, On Moore graphs, Proc. Cambridge Phil. Soc. 74 (1973) 227-236.

Crossrefs

Moore lower bound on the order of a (k,g) cage: this sequence (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7), 2*A053698 (g=8), 2*A053699 (g=10), 2*A053700 (g=12), 2*A053716 (g=14), 2*A053716 (g=16), 2*A102909 (g=18), 2*A103623 (g=20), 2*A060885 (g=22), 2*A105067 (g=24), 2*A060887 (g=26), 2*A104376 (g=28), 2*A104682 (g=30), 2*A105312 (g=32).
Cf. A054760 (the actual order of a (k,g)-cage).

Programs

  • Magma
    ExtendedStringToInt:=func;
    M:=func;
    k_:=2;g_:=3;
    anti:=func;
    [anti(kg):kg in[5..15]];
  • Mathematica
    Table[Function[g, FromDigits[#, k - 1] &@ IntegerDigits@ SeriesCoefficient[x (1 + x)/((1 - x) (1 - 10 x^2)), {x, 0, g}]][n - k + 3], {n, 2, 12}, {k, n, 2, -1}] // Flatten (* Michael De Vlieger, May 15 2017 *)

Formula

M(k,2i) = 2 sum_{j=0}^{i-1}(k-1)^j = string "2"^i read in base k-1.
M(k,2i+1) = (k-1)^i + 2 sum_{j=0}^{i-1}(k-1)^j = string "1"*"2"^i read in base k-1.
Recurrence:
M(k,3) = k + 1,
M(k,2i) = M(k,2i-1) + (k-1)^(i-1),
M(k,2i+1) = M(k,2i) + (k-1)^i.

A060885 a(n) = Sum_{j=0..10} n^j.

Original entry on oeis.org

1, 11, 2047, 88573, 1398101, 12207031, 72559411, 329554457, 1227133513, 3922632451, 11111111111, 28531167061, 67546215517, 149346699503, 311505013051, 617839704241, 1172812402961, 2141993519227, 3780494710543, 6471681049901, 10778947368421, 17513875027111, 27824681019587
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_11(n), where Phi_k is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), this sequence (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..10]]): n in [0..20]]; // G. C. Greubel, Apr 15 2019
    
  • Maple
    A060885 := proc(n)
            numtheory[cyclotomic](11,n) ;
    end proc:
    seq(A060885(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Join[{1},Table[Total[n^Range[0,10]],{n,20}]] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 \\ Harry J. Smith, Jul 14 2009
    
  • PARI
    a(n) = polcyclo(11, n); \\ Michel Marcus, Apr 06 2016
    
  • Sage
    [sum(n^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 15 2019

Formula

a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
G.f.: (1+x^2*(1981+x*(66496+x*(534898+x*(1364848+x*(1233970+ x*(389104+x*(36829+x*(672+x)))))))))/(1-x)^11. - Harvey P. Dale, Jun 19 2011

A060887 a(n) = Sum_{j=0..12} n^j.

Original entry on oeis.org

1, 13, 8191, 797161, 22369621, 305175781, 2612138803, 16148168401, 78536544841, 317733228541, 1111111111111, 3452271214393, 9726655034461, 25239592216021, 61054982558011, 139013933454241, 300239975158033, 619036127056621, 1224880286215951, 2336276859014281, 4311578947368421
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_13(n) where Let Phi_k is the k-th cyclotomic polynomial.

Crossrefs

Programs

  • Magma
    [(&+[n^j: j in [0..12]]): n in [0..20]]; // G. C. Greubel, Apr 14 2019
    
  • Maple
    A060887 := proc(n)
            numtheory[cyclotomic](13,n) ;
    end proc:
    seq(A060887(n),n=0..20) ; # R. J. Mathar, Feb 11 2014
  • Mathematica
    Table[1 + Sum[n^j, {j, 1, 12}], {n, 0, 20}] (* G. C. Greubel, Apr 14 2019 *)
  • PARI
    a(n) = { n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 } \\ Harry J. Smith, Jul 14 2009
    
  • PARI
    A060887(n)=polcyclo(13,n) \\ M. F. Hasler, Dec 31 2012
    
  • Sage
    [sum(n^j for j in (0..12)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
G.f.: (x^12 + 2718*x^11 + 363156*x^10 + 8452952*x^9 + 59276439*x^8 + 155812164*x^7 + 167537592*x^6 + 74214648*x^5 + 12642423*x^4 + 691406*x^3 + 8100*x^2 + 1)/(1-x)^13. - Colin Barker, Oct 29 2012
a(n) = (n^13-1)/(n-1) with a(1) = 13 = lim_{x->1} a(x). - M. F. Hasler, Dec 31 2012

Extensions

Name changed by G. C. Greubel, Apr 14 2019

A102909 a(n) = Sum_{j=0..8} n^j.

Original entry on oeis.org

1, 9, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111, 235794769, 469070941, 883708281, 1589311291, 2745954241, 4581298449, 7411742281, 11668193551, 17927094321, 26947368421, 39714002329, 57489010371, 81870575521, 114861197401
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 01 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), this sequence (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..8]]): n in [0..30]]; // G. C. Greubel, Feb 13 2018
    
  • Mathematica
    1 + Sum[Range[0, 30]^j, {j, 1, 8}] (* G. C. Greubel, Feb 13 2018 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,9,511,9841,87381,488281,2015539,6725601,19173961},30] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    a(n)=n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [sum(n^j for j in (0..8)) for n in (0..30)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = (n^2+n+1) * (n^6+n^3+1) and so is never prime. - Jonathan Vos Post, Dec 21 2012
G.f.: (x^8 + 162*x^7 + 3418*x^6 + 14212*x^5 + 16578*x^4 + 5482*x^3 + 466*x^2 + 1)/(1-x)^9. - Colin Barker, Nov 05 2012, edited by M. F. Hasler, Dec 31 2012
a(n) = (n^9-1)/(n-1) with a(1) = 9. - L. Edson Jeffery and M. F. Hasler, Dec 30 2012
E.g.f.: exp(x)*(1 + 8*x + 247*x^2 + 1389*x^3 + 2127*x^4 + 1206*x^5 + 288*x^6 + 29*x^7 + x^8). - Stefano Spezia, Oct 03 2024

Extensions

Offset corrected by N. J. A. Sloane, Dec 30 2012

A104376 a(n) = Sum_{j=0..13} n^j.

Original entry on oeis.org

1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274, 854769755812155, 2085209001813616, 4803839602528529, 10523614159962558, 22047845151887119
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 16 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), this sequence (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..13]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
    
  • Mathematica
    Table[1+Sum[n^j, {j,1,13}], {n,0,20}] (* G. C. Greubel, Apr 14 2019 *)
    LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,14,16383,2391484,89478485,1525878906,15672832819,113037178808,628292358729,2859599056870,11111111111111,37974983358324,116719860413533,328114698808274},20] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    a(n)=sum(j=0,13, n^j) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [sum(n^j for j in (0..13)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
G.f.: (5461*x^12 + 1119288*x^11 + 37443654*x^10 + 372458048*x^9 + 1409085783*x^8 + 2263446576*x^7 + 1598944452*x^6 + 484853760*x^5 + 57484467*x^4 + 2163032*x^3 + 16278*x^2 + 1)/(1-x)^14. - Colin Barker, Nov 04 2012

Extensions

Name changed by G. C. Greubel, Apr 14 2019

A104682 a(n) = Sum_{j=0..14} n^j.

Original entry on oeis.org

1, 15, 32767, 7174453, 357913941, 7629394531, 94036996915, 791260251657, 5026338869833, 25736391511831, 111111111111111, 417724816941565, 1400638324962397, 4265491084507563, 11966776581370171, 31278135027204241, 76861433640456465, 178901440719363487
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), this sequence (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

Formula

a(n) = n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
a(n) = (n^2 + n + 1) * (n^4 + n^3 + n^2 + n + 1) * (n^8 - n^7 + n^5 - n^4 + n^3 - n + 1). - Jonathan Vos Post, Apr 23 2005
G.f.: (x^14 +10908*x^13 +3423487*x^12 +162086420*x^11 +2236727781*x^10 +11806635128*x^9 +27116815299*x^8 +28635678216*x^7 +13957353555*x^6 +2999111468*x^5 +253732221*x^4 +6684068*x^3 +32647*x^2 +1)/(1-x)^15. - Colin Barker, Nov 04 2012

Extensions

More terms from Harvey P. Dale, Jun 11 2011
Name changed by G. C. Greubel, Apr 15 2019

A105312 a(n) = Sum_{j=0..15} n^j.

Original entry on oeis.org

1, 16, 65535, 21523360, 1431655765, 38146972656, 564221981491, 5538821761600, 40210710958665, 231627523606480, 1111111111111111, 4594972986357216, 16807659899548765, 55451384098598320, 167534872139182395, 469172025408063616, 1229782938247303441
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 30 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), this sequence (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..15]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011 (modified by G. C. Greubel, Apr 14 2019)
    
  • Maple
    a:= n-> add(n^k, k=0..15):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 04 2012
  • Mathematica
    Prepend[Table[Total[n^Range[0,15]],{n,20}],1]  (* Harvey P. Dale, Jan 19 2011 *)
  • PARI
    vector(20, n, n--; sum(j=0,15, n^j)) \\ G. C. Greubel, Apr 14 2019
    
  • Sage
    [sum(n^j for j in (0..15)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^15 + n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
G.f.: (21845*x^14 + 10412160*x^13 + 689427979*x^12 + 12966588160*x^11 + 93207091581*x^10 + 296077418240*x^9 + 446019954555*x^8 + 326065923072*x^7 + 113735241015*x^6 + 17786608768*x^5 + 1095139065*x^4 + 20476160*x^3 + 65399*x^2 +1 )/(x-1)^16. - Colin Barker, Nov 04 2012

Extensions

More terms from Harvey P. Dale, Jan 19 2011
Name changed by G. C. Greubel, Apr 14 2019
Showing 1-7 of 7 results.