A060885
a(n) = Sum_{j=0..10} n^j.
Original entry on oeis.org
1, 11, 2047, 88573, 1398101, 12207031, 72559411, 329554457, 1227133513, 3922632451, 11111111111, 28531167061, 67546215517, 149346699503, 311505013051, 617839704241, 1172812402961, 2141993519227, 3780494710543, 6471681049901, 10778947368421, 17513875027111, 27824681019587
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9), this sequence (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..10]]): n in [0..20]]; // G. C. Greubel, Apr 15 2019
-
A060885 := proc(n)
numtheory[cyclotomic](11,n) ;
end proc:
seq(A060885(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Join[{1},Table[Total[n^Range[0,10]],{n,20}]] (* Harvey P. Dale, Jun 19 2011 *)
-
a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 \\ Harry J. Smith, Jul 14 2009
-
a(n) = polcyclo(11, n); \\ Michel Marcus, Apr 06 2016
-
[sum(n^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
A269442
a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.
Original entry on oeis.org
1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial:
A000012 (k=0),
A023443 (k=1),
A000027 (k=3),
A002522 (k=4),
A053699 (k=5),
A002061 (k=6),
A053716 (k=7),
A002523 (k=8),
A060883 (k=9),
A060884 (k=10),
A060885 (k=11),
A060886 (k=12),
A060887 (k=13),
A060888 (k=14),
A060889 (k=15),
A060890 (k=16), this sequence (k=17),
A060891 (k=18),
A269446 (k=19).
-
List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
-
[n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
-
Table[Cyclotomic[17, n], {n, 0, 15}]
-
a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
-
[n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
A102909
a(n) = Sum_{j=0..8} n^j.
Original entry on oeis.org
1, 9, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111, 235794769, 469070941, 883708281, 1589311291, 2745954241, 4581298449, 7411742281, 11668193551, 17927094321, 26947368421, 39714002329, 57489010371, 81870575521, 114861197401
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Mar 01 2005
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7), this sequence (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..8]]): n in [0..30]]; // G. C. Greubel, Feb 13 2018
-
1 + Sum[Range[0, 30]^j, {j, 1, 8}] (* G. C. Greubel, Feb 13 2018 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,9,511,9841,87381,488281,2015539,6725601,19173961},30] (* Harvey P. Dale, Feb 01 2025 *)
-
a(n)=n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..8)) for n in (0..30)] # G. C. Greubel, Apr 14 2019
A104376
a(n) = Sum_{j=0..13} n^j.
Original entry on oeis.org
1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274, 854769755812155, 2085209001813616, 4803839602528529, 10523614159962558, 22047845151887119
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 16 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12), this sequence (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..13]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
-
Table[1+Sum[n^j, {j,1,13}], {n,0,20}] (* G. C. Greubel, Apr 14 2019 *)
LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,14,16383,2391484,89478485,1525878906,15672832819,113037178808,628292358729,2859599056870,11111111111111,37974983358324,116719860413533,328114698808274},20] (* Harvey P. Dale, Sep 04 2023 *)
-
a(n)=sum(j=0,13, n^j) \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..13)) for n in (0..20)] # G. C. Greubel, Apr 14 2019
A104682
a(n) = Sum_{j=0..14} n^j.
Original entry on oeis.org
1, 15, 32767, 7174453, 357913941, 7629394531, 94036996915, 791260251657, 5026338869833, 25736391511831, 111111111111111, 417724816941565, 1400638324962397, 4265491084507563, 11966776581370171, 31278135027204241, 76861433640456465, 178901440719363487
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13), this sequence (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..14]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
-
With[{f=Total[n^Range[0,14]]},Table[f,{n,0,20}]] (* Harvey P. Dale, Jun 11 2011 *)
-
a(n) = sum(j=0, 14, n^j) \\ Charles R Greathouse IV, Oct 07 2015
-
[sum(n^j for j in (0..14)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
A105067
a(n) = Sum_{j=0..11} n^j.
Original entry on oeis.org
1, 12, 4095, 265720, 5592405, 61035156, 435356467, 2306881200, 9817068105, 35303692060, 111111111111, 313842837672, 810554586205, 1941507093540, 4361070182715, 9267595563616, 18764998447377, 36413889826860
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 05 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10), this sequence (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14),
A105312 (m=15),
A269442 (m=16),
A269446 (m=18).
A105312
a(n) = Sum_{j=0..15} n^j.
Original entry on oeis.org
1, 16, 65535, 21523360, 1431655765, 38146972656, 564221981491, 5538821761600, 40210710958665, 231627523606480, 1111111111111111, 4594972986357216, 16807659899548765, 55451384098598320, 167534872139182395, 469172025408063616, 1229782938247303441
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Apr 30 2005
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1),
A002061 (m=2),
A053698 (m=3),
A053699 (m=4),
A053700 (m=5),
A053716 (m=6),
A053717 (m=7),
A102909 (m=8),
A103623 (m=9),
A060885 (m=10),
A105067 (m=11),
A060887 (m=12),
A104376 (m=13),
A104682 (m=14), this sequence (m=15),
A269442 (m=16),
A269446 (m=18).
-
[(&+[n^j: j in [0..15]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011 (modified by G. C. Greubel, Apr 14 2019)
-
a:= n-> add(n^k, k=0..15):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 04 2012
-
Prepend[Table[Total[n^Range[0,15]],{n,20}],1] (* Harvey P. Dale, Jan 19 2011 *)
-
vector(20, n, n--; sum(j=0,15, n^j)) \\ G. C. Greubel, Apr 14 2019
-
[sum(n^j for j in (0..15)) for n in (0..20)] # G. C. Greubel, Apr 14 2019
A326618
a(n) = n^18 + n^9 + 1.
Original entry on oeis.org
1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0
Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial:
A000012 (k=0),
A023443 (k=1),
A000027 (k=2),
A002061 (k=3),
A002522 (k=4),
A053699 (k=5),
A002061 (k=6),
A053716 (k=7),
A002523 (k=8),
A060883 (k=9),
A060884 (k=10),
A060885 (k=11),
A060886 (k=12),
A060887 (k=13),
A060888 (k=14),
A060889 (k=15),
A060890 (k=16),
A269442 (k=17),
A060891 (k=18),
A269446 (k=19),
A060892 (k=20),
A269483 (k=21),
A269486 (k=22),
A060893 (k=24),
A269527 (k=25),
A266229 (k=26), this sequence (k=27),
A270204 (k=28),
A060894 (k=30),
A060895 (k=32),
A060896 (k=36).
Cf.
A153440 (indices of prime terms).
-
[n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
-
Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
Table[Cyclotomic[27, n], {n, 0, 17}]
-
a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019
Showing 1-8 of 8 results.
Comments