cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Richard N. Smith

Richard N. Smith's wiki page.

Richard N. Smith has authored 9 sequences.

A309129 Numbers n such that -n is a quadratic nonresidue modulo all odd primes p <= sqrt(n) which do not divide n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 33, 37, 40, 42, 43, 45, 48, 57, 58, 60, 63, 67, 70, 72, 78, 85, 88, 93, 100, 102, 105, 112, 120, 130, 133, 135, 147, 148, 163, 165, 168, 177, 190, 210, 232, 240, 247, 253, 267, 268, 273, 280, 312, 330, 333, 345, 357, 385, 408, 462, 520, 522, 652, 708, 760, 840, 928, 1320, 1365, 1467, 1848
Offset: 1

Author

Richard N. Smith, Jul 13 2019

Keywords

Comments

Contains A000926 and A003173 (except the term 11) as subsequences.
Conjecture: 1848 is the last term of this sequence.

Examples

			42 is in this sequence because sqrt(42) = 6.480740..., and -42 is quadratic nonresidue mod all odd primes < 6.480740... not dividing 42 (only mod 5).
67 is in this sequence because sqrt(67) = 8.185352..., and -67 is quadratic nonresidue mod all odd primes < 8.185352... not dividing 67 (mod 3, mod 5 and mod 7).
17 is not in this sequence because -17 is quadratic residue mod 3 and 3 < sqrt(17) and 3 does not divide 17.
90 is not in this sequence because -90 is quadratic residue mod 7 and 7 < sqrt(90) and 7 does not divide 90.
For n < 9, the range of p is empty, thus the numbers n < 9 are trivially in this sequence.
		

Crossrefs

Programs

  • PARI
    a(n)=forprime(p=3, ,if(kronecker(-n,p)==1,return(p)))
    for(k=1, 10^6,if(a(k)>sqrt(k),print1(k, ", ")))

A309130 Smallest prime factor of A077586(n).

Original entry on oeis.org

7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617
Offset: 1

Author

Richard N. Smith, Jul 13 2019

Keywords

Comments

A263686 is a subsequence.
Agrees with A263686 in the first four terms, but then the two sequences differ for the first time at n = 5, because prime(5) = 11 is not in A000043.
a(18) = A263686(9) is greater than 1.56*10^17*(2^61-1), see link.
a(n) = A077586(n) iff A077586(n) is prime, A077586(n) is prime for 1 <= n <= 4, but composite for 5 <= n <= 17. The status of A077586(18) = 2^(2^61-1)-1 is unknown. It is conjectured that A077586(n) is composite for all n >= 5.
a(20) = 456959, a(21) = 18384329, a(22) = 198839, a(23) = 2349023, a(24) = A263686(10) is greater than 1.25*10^16*(2^89-1).
Conjecture: All terms are in A122094 (all terms in A263686 are in A122094).
For examples related to that conjecture, see A322568. - Jeppe Stig Nielsen, Aug 29 2019
a(30) = 46559, a(32) = 23671, a(36) = 7151489, a(39) = 4698047, a(41) = 719, a(43) = 1440847, a(45) = 179689, a(47) = 11759383, a(48) = 23602441, a(50) = 9024439, a(51) = 28875361, a(52) = 6301423, a(54) = 2493983, a(56) = 33518137, a(59) = 6727783, a(66) = 95111, a(72) = 1439, a(73) = 99833, a(78) = 38119, a(81) = 26849, a(83) = 8258911, a(86) = 16173559, a(89) = 625343, a(93) = 9743. - Chai Wah Wu, Oct 16 2019

Crossrefs

Programs

  • PARI
    A309130(n)=A020639(2^(2^prime(n)-1)-1) \\ For efficiency, use addprimes([large terms of this sequence]). - M. F. Hasler, Mar 01 2025

Formula

a(n) = A020639(A077586(n)).
a(n) = A049479(A001348(n)). - M. F. Hasler, Mar 01 2025

A326615 a(n) is the smallest prime p such that Sum_{primes q <= p} Kronecker(n,q) > 0, or 0 if no such prime exists.

Original entry on oeis.org

2, 11100143, 61981, 3, 2082927221, 5, 2, 11100143, 2, 3, 577, 61463, 2083, 11, 2, 3, 2, 11100121, 5, 2082927199, 1217, 3, 2, 5, 2, 17, 61981, 3, 719, 7, 2, 11100143, 2, 3, 23, 5, 11, 31, 2, 3, 2, 13, 17, 7, 2082927199, 3, 2, 61463, 2, 11100121, 7, 3, 17, 5, 2, 11, 2, 3, 31, 7, 5, 41, 2, 3
Offset: 1

Author

Richard N. Smith, Jul 15 2019

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(i=0); forprime(p=2, oo, i+=kronecker(n, p); if(i>0, return(p))) \\ after Jianing Song in A306499

Formula

a(A003658(n)) = A306499(n).
a(n) = 2 iff n == 1 or 7 mod 8 (see A047522).
a(n) = 3 iff n == 4 mod 6 (see A016957).

A326609 Largest minimal prime in base n (written in base 10).

Original entry on oeis.org

3, 13, 5, 3121, 5209, 2801, 76695841, 811, 66600049, 29156193474041220857161146715104735751776055777, 388177921
Offset: 2

Author

Richard N. Smith, Jul 13 2019

Keywords

Comments

a(13) is (probably) 13^32020*8+183, it has 35670 digits, a(14) = 14^85*4+65, it has 99 digits, a(15) = (15^106*66-619)/7, it has 126 digits, a(16) = 16^3544*9+145, it has 4269 digits.
a(17) is the smallest prime of the form (4105*17^k-9)/16 if it exists, otherwise (probably) (73*17^111333-9)/16 (136991 digits), a(18) = 18^31*304+1 (42 digits).
Other known terms: a(20) = (20^449*16-2809)/19 (585 digits), a(22) = 22^763*20+7041 (1026 digits), a(23) is (probably) (23^800873*106-7)/11 (1090573 digits), a(24) = (24^99*512-121)/23 (138 digits), a(30) = 30^1023*12+1 (1513 digits), a(42) = (42^487*27-1093)/41 (791 digits).
a(19) is the smallest prime of the form (15964*19^k-1)/3 if it exists, otherwise (probably) (904*19^110984-1)/3 (141924 digits), a(21) is the smallest prime of the form 16*21^k+335 if it exists, otherwise (probably) (51*21^479149-1243)/4 (633542 digits).

Crossrefs

Cf. A071062 (base 10 minimal primes), A110600 (base 12 minimal primes).
Cf. A293142 (largest non-repunit permutable prime), A317689 (largest non-repunit circular prime), A103443 (largest left-truncatable prime), A023107 (largest right-truncatable prime), A323137 (largest two-sided prime), A084738 (smallest repunit prime), A186995 (smallest weakly prime).

A326655 Numbers k such that 3*4^k+1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 9, 15, 18, 33, 138, 204, 219, 267, 1104, 1408, 1584, 1956, 17175, 21147, 24075, 27396, 27591, 40095, 354984, 400989, 916248, 1145805, 2541153, 5414673
Offset: 1

Author

Richard N. Smith, Jul 16 2019

Keywords

Comments

One half of the even terms in A002253.

Crossrefs

Numbers k such that r*(r+1)^k+1 is prime: A003306 (r=2), this sequence (r=3), A204322 (r=4), A247260 (r=5), A245241 (r=6), A269544 (r=7), A056799 (r=8), A056797 (r=9), A057462 (r=10), A251259 (r=11).

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019

A326614 Smallest Euler-Jacobi pseudoprime to base n.

Original entry on oeis.org

9, 561, 121, 341, 781, 217, 25, 9, 91, 9, 133, 91, 85, 15, 1687, 15, 9, 25, 9, 21, 221, 21, 169, 25, 217, 9, 121, 9, 15, 49, 15, 25, 545, 33, 9, 35, 9, 39, 133, 39, 21, 451, 21, 9, 481, 9, 65, 49, 25, 49, 25, 51, 9, 55, 9, 55, 25, 57, 15, 481, 15, 9, 529, 9, 33, 65, 33, 25, 35, 69, 9
Offset: 1

Author

Richard N. Smith, Jul 14 2019

Keywords

Comments

a(n) = 9 for n == 1 or 8 mod 9 (see A056020).

Crossrefs

Cf. A047713, A048950, A090086 (least Fermat pseudoprime to base n), A298756 (least strong pseudoprime to base n).

Programs

  • Mathematica
    ejpspQ[n_,b_] := CoprimeQ[n,b] && CompositeQ[n] && Mod[b^((n - 1)/2) - JacobiSymbol[b, n], n] == 0; leastEJpsp[b_] := Module[{k=9}, While[!ejpspQ[k, b], k+=2]; k]; Array[leastEJpsp, 100] (* Amiram Eldar, Jul 15 2019 *)
  • PARI
    isok(k, n) = ((k%2==1) && (gcd(k, n)==1) && Mod(n, k)^((k-1)/2)==kronecker(n, k) && !isprime(k));
    a(n) = my(k=2); while (! isok(k, n), k++); k; \\ Michel Marcus, Jul 15 2019

A326612 Indices where A001175 (Pisano period) sets a new record value.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 25, 30, 50, 98, 125, 150, 206, 243, 250, 490, 566, 590, 625, 750, 1030, 1046, 1094, 1154, 1214, 1226, 1250, 2450, 2738, 2830, 2846, 2894, 2906, 3086, 3125, 3750, 4802, 5534, 5594, 5606, 5666, 5714, 5770, 5834, 5906, 5990, 6070, 6130, 6250
Offset: 1

Author

Richard N. Smith, Jul 14 2019

Keywords

Comments

Record values: 1, 3, 8, 20, 24, 60, 100, 120, 300, 336, 500, 600, 624, 648, 1500, 1680, 1704, 1740, 2500, 3000, ...

Crossrefs

Cf. A001175.

Programs

  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<r, r=a(n); print1(", "n))) \\ after Charles R Greathouse IV in A001175

A326610 Least k such that A000790(k) = A108574(n).

Original entry on oeis.org

0, 3, 26, 11, 14, 59, 83, 23, 443, 338, 263, 578, 38, 662, 47, 227, 3467, 1823, 842, 4898, 983, 4622, 4847, 2747, 4127, 11567, 347, 542, 17483, 2867, 22367, 43067, 18527, 5042, 5063, 12422, 66047, 2858, 87302, 11702, 11147, 3062, 24602, 158, 94763, 247838, 1202
Offset: 1

Author

Richard N. Smith, Jul 14 2019

Keywords

Comments

The largest term is a(106) = 10009487 (for the primary pretender 453).

Crossrefs