cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059839 a(n) = n^8 + n^6 + n^4 + n^2 + 1.

Original entry on oeis.org

1, 5, 341, 7381, 69905, 406901, 1727605, 5884901, 17043521, 43584805, 101010101, 216145205, 432988561, 820586261, 1483357205, 2574332101, 4311810305, 6999978821, 11054078101, 17030739605, 25664160401, 37908820405, 54989488181, 78459301541, 110266749505, 152832422501
Offset: 0

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[n^(2*Range[4])]+1,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,5,341,7381,69905,406901,1727605,5884901,17043521},30] (* Harvey P. Dale, Jan 02 2015 *)
  • PARI
    a(n) = { my(f=n^2); f^4 + f^3 + f^2 + f + 1 } \\ Harry J. Smith, Jun 29 2009

Formula

a(n) = (n^4-n^3+n^2-n+1)*(n^4+n^3+n^2+n+1) = A060884(n)*A053699(n). a(n) = (n^10-1)/(n^2-1), n>1. - Alexander Adamchuk, Apr 13 2006
G.f.: -(5*x^8 +296*x^7 +4492*x^6 +15332*x^5 +15458*x^4 +4408*x^3 +332*x^2 -4*x +1)/ (x-1)^9. - Colin Barker, Nov 05 2012

A348897 Numbers of the form (x + y)*(x^2 + y^2).

Original entry on oeis.org

0, 1, 4, 8, 15, 27, 32, 40, 64, 65, 85, 108, 120, 125, 156, 175, 203, 216, 256, 259, 272, 320, 343, 369, 400, 405, 477, 500, 512, 520, 580, 585, 671, 680, 715, 729, 803, 820, 864, 888, 935, 960, 1000, 1080, 1105, 1111, 1157, 1248, 1261, 1331, 1372, 1400, 1417
Offset: 1

Views

Author

Peter Luschny, Nov 10 2021

Keywords

Comments

Also numbers of the form (x - i*y)*(x + i*y)*(x + y).
Loeschian numbers of this form are A349200.
A349201 and A349202 are subsequences of this sequence.
Numbers of the form 1 + n + n^2 + n^3 (A053698) are a subsequence.
Numbers of the form n^3 + n^4 + n^5 + n^6 are a subsequence.
Numbers of the form 1 + n^2 + n^4 + n^6 (A059830) are a subsequence. - Bernard Schott, Nov 11 2021

Examples

			1010101 is in this sequence because 1010101 = (100 + 1)*(100^2 + 1^2).
		

Crossrefs

Programs

  • Julia
    # Returns the terms less than or equal to b^3.
    function A348897List(b)
        b3 = b^3; R = [0]
        for n in 1:b
            for k in 0:n
                a = (n + k) * (n^2 + k^2)
                a > b3 && break
                push!(R, a)
        end end
    unique!(sort!(R)) end
    A348897List(12) |> println
  • Maple
    # Returns the terms less than or equal to b^3.
    A348897List := proc(b) local n, k, a, b3, R;
    b3 := abs(b^3); R := {};
    for n from 0 to b do for k from 0 to n do
        a := (n + k)*(n^2 + k^2);
        if a > b3 then break fi;
        R := R union {a};
    od od; sort(R) end:
    A348897List(12);
  • Mathematica
    max = 2000;
    xmax = max^(1/3) // Ceiling;
    Table[(x + y) (x^2 + y^2), {x, 0, xmax}, {y, x, xmax}] // Flatten // Union // Select[#, # <= max&]& (* Jean-François Alcover, Oct 23 2023 *)

A059848 As a square table by antidiagonals, the n-digit number which in base k starts 1010101...

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 1, 0, 1, 4, 10, 10, 3, 0, 0, 1, 5, 17, 30, 21, 3, 1, 0, 1, 6, 26, 68, 91, 42, 4, 0, 0, 1, 7, 37, 130, 273, 273, 85, 4, 1, 0, 1, 8, 50, 222, 651, 1092, 820, 170, 5, 0, 0, 1, 9, 65, 350, 1333, 3255, 4369, 2460, 341, 5, 1, 0, 1, 10
Offset: 0

Views

Author

Henry Bottomley, Feb 26 2001

Keywords

Examples

			T(5,3)=10101 base 3=81+9+1=91; T(4,6)=1010 base 6=216+6=222. Table starts {0,0,0,0,...}, {1,1,1,1,...}, {0,1,2,3,...}, {1,2,5,10,...}, ...
		

Crossrefs

Formula

T(n, k)=floor[k^(n+1)/(k^2-1)] =T(n-2, k)+k^(n-1) =k*T(n-1, k)-((-1)^n-1)/2

A241855 Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
Offset: 1

Views

Author

Jean-François Alcover, Apr 30 2014

Keywords

Comments

Conjecture: any term, except 0 and 1, is never a square.
Row n=1 is A002450,
row n=2 is A002452,
row n=3 is A218728,
row n=4 is A218753,
rows n>=5 are not in the OEIS,
column k=2 is A066872,
columns k>=3 are not in the OEIS.

Examples

			Array begins:
0,  1,   5,    21,      85,       341,        1365, ...
0,  1,  10,    91,     820,      7381,       66430, ...
0,  1,  26,   651,   16276,    406901,    10172526, ...
0,  1,  50,  2451,  120100,   5884901,   288360150, ...
0,  1, 122, 14763, 1786324, 216145205, 26153569806, ...
etc.
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).
Showing 1-4 of 4 results.