cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A081256 Greatest prime factor of n^3 + 1.

Original entry on oeis.org

2, 3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 7, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 19, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

Record values appear to match the terms of A002383 for n>1. - Bill McEachen, Oct 18 2023

Crossrefs

Programs

  • Maple
    A081256 := proc(n)
        A006530(n^3+1) ;
    end proc:
    seq(A081256(n),n=1..20) ; # R. J. Mathar, Feb 13 2014
  • Mathematica
    Table[Max[Transpose[FactorInteger[n^3 + 1]][[1]]], {n, 25}]
  • PARI
    a(n)=my(f=factor(n^3+1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A081256(n)=vecmax(factor(n^3+1)[,1]) \\ It seems slightly slower to get the last element using ...[-1..-1][1]. - M. F. Hasler, Jun 15 2018

Formula

a(n) = A006530(A001093(n)). - M. F. Hasler, Jun 13 2018
a(n) >= 31 for n >= 70 (Buchmann et al., 1991). - Amiram Eldar, Oct 25 2024

Extensions

More terms from Harvey P. Dale, Mar 22 2003
More terms from Hugo Pfoertner, Jun 20 2004

A240548 Greatest prime factor of n^5 + 1.

Original entry on oeis.org

2, 11, 61, 41, 521, 101, 191, 331, 1181, 9091, 13421, 19141, 2411, 101, 1531, 61681, 101, 9041, 2251, 152381, 185641, 224071, 211, 5791, 9161, 1021, 271, 53951, 401, 71261, 21821, 4051, 1151041, 259631, 132631, 6781, 1824841, 2031671, 41011, 20641, 4111, 23201
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Examples

			a(2) = 11 because 2^5 + 1 = 33 = 3 * 11.
a(3) = 61 because 3^5 + 1 = 244 = 2^2 * 61.
a(4) = 41 because 4^5 + 1 = 1025 = 5^2 * 41.
a(2272) = 2273 because 2272^5 + 1 = 11^2 * 311 * 491 * 1171 * 1231 * 2273.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^5 + 1][[-1, 1]], {n, 100}]

A240553 Greatest prime factor of n^10+1.

Original entry on oeis.org

2, 41, 1181, 61681, 9161, 6781, 4021, 1321, 42521761, 27961, 212601841, 85403261, 641, 1383881, 131381, 4278255361, 63541, 145501, 16936647121, 222361, 920421641, 150901, 272341, 1801385941, 632133361, 208518605101, 47763361, 84961, 470925821, 12109381
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^10 + 1][[-1, 1]], {n, 100}]

A096169 Odd n such that (n^4+1)/2 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 21, 23, 29, 35, 39, 57, 61, 65, 71, 73, 81, 103, 105, 113, 115, 119, 129, 153, 165, 169, 171, 199, 203, 205, 251, 259, 267, 275, 309, 313, 317, 333, 337, 339, 353, 363, 403, 405, 415, 419, 431, 445, 449, 453, 455, 463, 471, 477, 479, 487
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=3 because (3^4+1)/2=82/2=41 is prime.
		

Crossrefs

Cf. A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096170 primes of the form (n^4+1)/2, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ n: n in [0..2500] | IsPrime((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
  • Mathematica
    Select[Range[1,501,2],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jun 04 2011 *)

A096171 Numbers k such that k^4+1 is an odd semiprime.

Original entry on oeis.org

8, 10, 12, 14, 18, 22, 26, 30, 32, 36, 38, 40, 42, 50, 52, 58, 62, 68, 72, 78, 84, 86, 92, 94, 98, 100, 102, 108, 112, 114, 116, 120, 122, 124, 128, 130, 138, 146, 148, 152, 158, 162, 166, 170, 172, 176, 184, 186, 200, 212, 214, 216, 218, 222, 224, 226, 234, 250, 252
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=8 because 8^4 + 1 = 4097 = 17*241;
a(2)=10: 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Cf. A000068 (n^4+1 is prime), A037896 (primes of the form k^4+1), A096169 ((n^4+1)/2 is prime), A069170 (primes of the form (k^4+1)/2), A096172 (largest prime factor of n^4+1), A046388.

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isA096171(n) = {local(m);m=n^4+1;(m%2==1)&&(bigomega(m)==2)} \\ Michael B. Porter, Feb 02 2010

A240549 Greatest prime factor of n^6+1.

Original entry on oeis.org

2, 13, 73, 241, 601, 97, 181, 109, 6481, 9901, 1117, 20593, 28393, 1033, 3877, 673, 83233, 457, 769, 12277, 3181, 1489, 7549, 577, 390001, 2521, 530713, 47221, 421, 809101, 922561, 1321, 91141, 1249, 5413, 1678321, 144061, 2083693, 2311921, 41941, 1993, 4621
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^6 + 1][[-1, 1]], {n, 100}]

A096170 Primes of the form (k^4 + 1)/2.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Note that k must be odd. Terms of primitive Pythagorean triples: (k^2, (k^4-1)/2, (k^4+1)/2).

Examples

			a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
		

Crossrefs

Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Select[(Range[200]^4+1)/2,PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(n=3,sqrtnint(lim\1*2-1,4),2, if(isprime(t=(n^4+1)/2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Name edited by Zak Seidov, Apr 14 2011

A240550 Greatest prime factor of n^7+1.

Original entry on oeis.org

2, 43, 547, 113, 449, 197, 911, 5419, 16493, 909091, 1623931, 13063, 22079, 7027567, 10678711, 15790321, 22796593, 32222107, 226871, 10529, 81867661, 86969, 2969, 183458857, 234750601, 59011, 2269, 35771, 574995877, 1118041, 71821, 86171, 219409, 104119, 11831
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^7 + 1][[-1, 1]], {n, 100}]

A240551 Greatest prime factor of n^8+1.

Original entry on oeis.org

2, 257, 193, 65537, 11489, 98801, 169553, 673, 21523361, 5882353, 6304673, 260753, 407865361, 16097, 179953, 6700417, 184417, 113607841, 563377, 1505882353, 300673, 3227992561, 623009, 2311681, 29423041, 57734881, 769, 22223646961, 561377, 4855073
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^8 + 1][[-1, 1]], {n, 100}]

A240552 Greatest prime factor of n^9+1.

Original entry on oeis.org

2, 19, 37, 109, 5167, 46441, 117307, 87211, 530713, 52579, 590077, 1801, 937, 132049, 811, 38737, 5653, 465841, 236377, 69481, 613, 5966803, 1117, 7561, 6597973, 102966067, 19927, 102547, 10435069, 120871, 1538083, 18837001, 221401, 745903, 612740917, 55117
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^9 + 1][[-1, 1]], {n, 100}]
  • PARI
    a(n) = vecmax(factor(n^9+1)[,1]); \\ Michel Marcus, Dec 17 2017
Showing 1-10 of 12 results. Next