Jan Fricke has authored 10 sequences.
A180634
Numbers n such that the discriminant of the n-th cyclotomic polynomial is a square.
Original entry on oeis.org
1, 2, 8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100
Offset: 1
n=5: The 5th cyclotomic polynomial is x^4+x^3+x^2+x+1 with discriminant 125, which is not a square. The Galois group is generated by (1243), that is an odd permutation. Hence 5 is not in the sequence. n=8: The 8th cyclotomic polynomial is x^4+1 with discriminant 256, which is a square. The Galois group is {id,(13)(57),(15)(37),(17)(35)}, that are all even permutations. Hence 8 is in the sequence.
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
-
m := proc(n) local k, r; r := 1;
for k from 1 to n do if igcd(n,k) = 1 then r := modp(r*k,n) fi od; r end:
[1, op(select(n -> m(n) = 1, [$1..100]))]; # Peter Luschny, May 25 2017
-
fQ[n_] := IntegerQ@ Sqrt@ Discriminant[ Cyclotomic[ n, x], x]; Select[ Range@ 100, fQ] (* Robert G. Wilson v, Dec 10 2014 *)
-
for(n=1,100,if(issquare(poldisc(polcyclo(n))),print(n)))
A152925
a(n) = smallest number m such that in 1,2,..,m written in base n, no two of the n digits occurs the same number of times.
Original entry on oeis.org
1, 5, 13, 47, 105, 536, 1341, 9231, 24697, 212594, 592269, 6100559, 17464969, 209215572, 610839805, 8338210079, 24709115769, 378460880126
Offset: 2
In base 5 in 1,2,..,142_5 = 47, digit 1 occurs 43 times, 2 occurs 20, 3 occurs 19 times, 4 occurs 17 times, and 0 occurs 14.
A127699
Length of period of the sequence (1^1^1^..., 2^2^2^..., 3^3^3^..., 4^4^4^..., ...) modulo n.
Original entry on oeis.org
1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 220, 12, 156, 42, 60, 16, 272, 18, 342, 20, 42, 220, 5060, 24, 100, 156, 54, 84, 2436, 60, 1860, 32, 660, 272, 420, 36, 1332, 342, 156, 40, 1640, 42, 1806, 220, 180, 5060, 237820, 48, 294, 100, 816, 156, 8268, 54, 220, 168
Offset: 1
a(10)=20 because the last digit of 1^1^1^.. is 1; the sequence 2,2^2,2^2^2,.. ends with 2,4,6,6,...; the sequence 3,3^3,3^3^3,... with 3,7,7,...; 4,4^4,4^4^4,... with 4,6,6,...; and so on. We get as last digits 1,6,7,6,5,6,3,6,9,0, 1,6,3,6,5,6,7,6,9,0 and then the pattern repeats.
-
a:= proc(n) option remember; `if`(n=1, 1,
ilcm(n, a(numtheory[lambda](n))))
end:
seq(a(n), n=1..56); # Alois P. Heinz, Jan 03 2023
-
nn=100; a=Table[0,{nn}]; a[[1]]=1; Do[a[[n]]=LCM[n,a[[CarmichaelLambda[n]]]], {n,2,nn}]; a (* T. D. Noe, Jan 30 2009 *)
-
from functools import lru_cache
from math import lcm
from sympy import reduced_totient
@lru_cache(maxsize=None)
def A127699(n): return 1 if n == 1 else lcm(n, A127699(reduced_totient(n))) # Chai Wah Wu, Jan 03 2023
Extension and correction from
T. D. Noe, Jan 30 2009
Incorrect formula removed by
T. D. Noe, Feb 02 2009
A119486
Numbers of children for which there is a subset which cannot be generated by a counting-out game.
Original entry on oeis.org
9, 12, 15, 18, 20, 21, 24, 25, 27, 28, 30, 33
Offset: 1
For 9 children 1,2,3,4,5,6,7,8,9, there is no possibility to select 3,4,6,7 (in any order) by a counting-out game, e.g. for selecting 3,4,6,7 the count-to number has to be 3 mod 9, 1 mod 8, 2 mod 7 and 1 mod 6, which is impossible.
A119485
Number of children for which any subset can be generated by a counting-out game.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 26, 29, 31, 32
Offset: 1
Having 6 children 1,2,3,4,5,6, then the children 2,4,6 can be counted-out by counting to 42: first selected child is 6, then 2 and finally 4.
A074051
For each n there are uniquely determined numbers a(n) and b(n) and a polynomial p_n(x) such that for all integers m we have Sum_{i=1..m}i^n(i+1)! = a(n)*Sum_{i=1..m} (i+1)! + p_n(m)*(m+2)! + b(n). The sequence b(n) is A074052.
Original entry on oeis.org
1, -1, 0, 3, -7, 0, 59, -217, 146, 2593, -15551, 32802, 160709, -1856621, 7971872, 1299951, -287113779, 2262481448, -7275903849, -36989148757, 698330745002, -4867040141851, 10231044332629, 184216198044034, -2679722886596295, 17971204188130391, -17976259717948832
Offset: 0
a(2)=0 because Sum_{i=1..m}i^2(i+1)! = (m-1)(m+2)!+2.
a(3)=3 because Sum_{i=1..m}i^3(i+1)! = 3*Sum_{i=1..m}(i+1)!+(m^2-m-1)(m+2)!+2.
-
alias(S2 = combinat[stirling2]);
A074051 := proc(n) local k;
1 + add((-1)^(n+k) * (S2(n+1, k+1) - S2(n+2, k+1)), k = 0..n) end:
seq(A074051(i), i = 0..26); # Peter Luschny, Apr 17 2011
-
A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; Expand[n^a - (n + 2)p[n] + p[n - 1]] ]
(* Second program: *)
a[n_] := (-1)^n (BellB[n+2, -1] - BellB[n+1, -1]);
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
-
from itertools import accumulate
def A074051_list(size):
if size < 1: return []
L, accu = [], [1]
for n in range(size-1):
accu = list(accumulate([-accu[-1]] + accu))
L.append(-(-1)**n*accu[-2])
return L
print(A074051_list(28)) # Peter Luschny, Apr 25 2016
A081257
a(n) is the greatest prime factor of (n^3 - 1).
Original entry on oeis.org
7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 2
a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
Cf.
A096175 (n^3-1 is an odd semiprime),
A096176 ((n^3-1)/(n-1) is prime).
A081258
Numbers k > 1 such that k^3 - 1 (or equivalently k^2 + k + 1) has no prime factor greater than k.
Original entry on oeis.org
16, 18, 22, 30, 49, 67, 68, 74, 79, 81, 87, 100, 102, 121, 135, 137, 146, 149, 154, 158, 159, 163, 165, 169, 172, 178, 181, 191, 211, 221, 229, 230, 235, 256, 262, 263, 269, 273, 277, 291, 292, 301, 305, 313, 315, 324, 326, 334, 352, 361, 372, 373, 380, 393
Offset: 1
16 is a term: 16^3 - 1 = 4095 = 3*3*5*7*13.
-
isA081258 := proc(n)
numtheory[factorset](n^3-1) ;
if max(op(%)) <= n then
true;
else
false;
end if;
end proc;
for n from 1 to 400 do
if isA081258(n) then
printf("%d,",n);
end if;
end do: # R. J. Mathar, Oct 11 2011
-
Select[Range[2, 1000], FactorInteger[#^3 - 1][[-1, 1]] <= #&] (* Jean-François Alcover, Jun 15 2020 *)
A081256
Greatest prime factor of n^3 + 1.
Original entry on oeis.org
2, 3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 7, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 19, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 1
- R. J. Mathar and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 5000 terms from R. J. Mathar)
- J. Buchmann, K. Győry, M. Mignotte, and N. Tzanakis, Lower bounds for P(x^3+k), an elementary approach, Publ. Math. Debrecen, Vol. 38, No. 1-2 (1991), pp. 145-163.
A074052
The lowest order term in an expansion of Sum_{i=1..m} i^n*(i+1)! in a special factorial basis.
Original entry on oeis.org
0, -2, 2, 2, -14, 26, 34, -398, 1210, 450, -23406, 118634, -166286, -1983342, 18159658, -68002894, -112926670, 3497644570, -24969255550, 64943618962, 607880756218, -9318511004702, 60525142971954, -80108659182870, -3000122066181358
Offset: 0
a(0) = 0 because Sum_{i=1..m} (i+1)! = 0 + 1*Sum_{i=1..m} (i+1)! + 0*(m+2)!.
a(1) = -2 because Sum_{i=1..m} i*(i+1)! = -2 -1*Sum_{i=1..m} (i+1)! + 1*(m+2)!.
a(2) = 2 because Sum_{i=1..m} i^2*(i+1)! = 2 +0*Sum_{i=1..m} (i+1)! + (m-1)*(m+2)!.
a(3) = 2 because Sum_{i=1..n} i^3*(i+1)! = 2 +3*Sum_{i=1..m} (i+1)! + (m^2-m-1)*(m+2)!.
a(4)=-14 because Sum_{i=1..n} i^4*(i+1)! = -14 -7*Sum_{i=1..n} (i+1)! + (m^3-m^2-2*m+7)*(m+2)!.
-
A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; -2 p[0] ]
More terms from R. J. Mathar, Oct 11 2011
Comments