cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A096173 Numbers k such that k^3+1 is an odd semiprime.

Original entry on oeis.org

2, 4, 6, 16, 18, 22, 28, 42, 58, 60, 70, 72, 78, 100, 102, 106, 112, 148, 156, 162, 190, 210, 232, 280, 310, 330, 352, 358, 382, 396, 448, 456, 490, 568, 606, 672, 756, 786, 820, 826, 828, 856, 858, 876, 928, 970, 982, 1008, 1012, 1030, 1068, 1092, 1108, 1150
Offset: 1

Views

Author

Hugo Pfoertner, Jun 20 2004

Keywords

Comments

Numbers n such that n^3 + 1 is a semiprime, because then n^3 + 1 must be odd, since n^3 + 1 = (n+1)*(n^2 - n + 1) is a semiprime only if n+1 is odd. - Jonathan Sondow, Feb 02 2014
Obviously, n + 1 is always a prime number. Sequence is intersection of A006093 and A055494. - Altug Alkan, Dec 20 2015

Examples

			a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
		

Crossrefs

Cf. A001358; A081256: largest prime factor of k^3+1; A096174: (k^3+1)/(k+1) is prime; A046315, A237037, A237038, A237039, A237040.

Programs

  • Magma
    [n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
  • Maple
    select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i,i=1..1000)]); # Robert Israel, Dec 20 2015
  • Mathematica
    Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
  • PARI
    for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
    

Formula

a(n) = 2*A237037(n) = (A237040(n)-1)^(1/3). - Jonathan Sondow, Feb 02 2014

Extensions

Corrected by Zak Seidov, Mar 08 2006

A237040 Semiprimes of the form k^3 + 1.

Original entry on oeis.org

9, 65, 217, 4097, 5833, 10649, 21953, 74089, 195113, 216001, 343001, 373249, 474553, 1000001, 1061209, 1191017, 1404929, 3241793, 3796417, 4251529, 6859001, 9261001, 12487169, 21952001, 29791001, 35937001, 43614209, 45882713, 55742969, 62099137, 89915393, 94818817, 117649001
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

k^3 + 1 is a term iff k + 1 and k^2 - k + 1 are both prime.
Is the sequence infinite? This is an analog of Landau's 4th problem, namely, are there infinitely many primes of the form k^2 + 1?
In other words: are there infinitely many primes p such that p^2 - 3*p + 3 is also prime? - Charles R Greathouse IV, Jul 02 2017

Examples

			9 = 3*3 = 2^3 + 1 is the first semiprime of the form n^3 + 1, so a(1) = 9.
		

Crossrefs

Cf. A242262 (semiprimes of the form k^3 - 1).

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..500] | IsSemiprime(s) where s is n^3 + 1]; // Vincenzo Librandi, Jul 02 2017
  • Mathematica
    L = Select[Range[500], PrimeQ[# + 1] && PrimeQ[#^2 - # + 1] &]; L^3 + 1
    Select[Range[50]^3 + 1, PrimeOmega[#] == 2 &] (* Zak Seidov, Jun 26 2017 *)
  • PARI
    lista(nn) = for (n=1, nn, if (bigomega(sp=n^3+1) == 2, print1(sp, ", "));); \\ Michel Marcus, Jun 27 2017
    
  • PARI
    list(lim)=my(v=List(),n,t); forprime(p=3,sqrtnint(lim\1-1,3)+1, if(isprime(t=p^2-3*p+3), listput(v,t*p))); Vec(v) \\ Charles R Greathouse IV, Jul 02 2017
    

Formula

a(n) = A096173(n)^3 + 1 = 8*A237037(n)^3 + 1.

A081257 a(n) is the greatest prime factor of (n^3 - 1).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 2

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

The record values here (as well as those for A081256) appear to match the terms of A002383 for n > 1. - Bill McEachen, Jun 19 2023

Examples

			a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
		

Crossrefs

Cf. A096175 (n^3-1 is an odd semiprime), A096176 ((n^3-1)/(n-1) is prime).

Programs

Formula

a(n) = A006530(A068601(n)). - Michel Marcus, Jun 19 2023

Extensions

More terms from Hugo Pfoertner, Jun 21 2004

A096174 Even numbers k such that (k^3+1)/(k+1) is prime.

Original entry on oeis.org

2, 4, 6, 16, 18, 22, 28, 34, 42, 58, 60, 70, 72, 76, 78, 90, 100, 102, 106, 112, 118, 120, 132, 142, 144, 148, 154, 156, 162, 168, 174, 190, 204, 210, 216, 232, 246, 280, 288, 294, 310, 330, 352, 358, 370, 382, 384, 396, 406, 436, 448, 454, 456, 490, 496, 526
Offset: 1

Views

Author

Hugo Pfoertner, Jun 20 2004

Keywords

Examples

			a(1)=2 because (2^3+1)/(2+1)=9/3=3 is prime, a(8)=34: (34^3+1)/(34+1)=39305/35=1123 is prime.
		

Crossrefs

Programs

Extensions

Definition corrected by N. J. A. Sloane, Apr 08 2010

A237037 Numbers k such that (2*k)^3 + 1 is a semiprime.

Original entry on oeis.org

1, 2, 3, 8, 9, 11, 14, 21, 29, 30, 35, 36, 39, 50, 51, 53, 56, 74, 78, 81, 95, 105, 116, 140, 155, 165, 176, 179, 191, 198, 224, 228, 245, 284, 303, 336, 378, 393, 410, 413, 414, 428, 429, 438, 464, 485, 491, 504, 506, 515, 534, 546, 554, 575, 596, 611, 638, 641, 648, 659, 680, 683, 711, 714, 725, 744, 765, 774, 791
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

Numbers k such that 2*k+1 and 4*k^2 - 2*k + 1 are both prime.
Same as k/2 such that k^3 + 1 is a semiprime, because then k must be even.

Examples

			(2*1)^3 + 1 = 9 = 3*3 is a semiprime, so a(1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[800], PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]
    Select[Range[800],PrimeOmega[(2#)^3+1]==2&] (* Harvey P. Dale, Nov 28 2024 *)

Formula

a(n) = A096173(n)/2 = (1/2)*(A237040(n)-1)^(1/3).

A240548 Greatest prime factor of n^5 + 1.

Original entry on oeis.org

2, 11, 61, 41, 521, 101, 191, 331, 1181, 9091, 13421, 19141, 2411, 101, 1531, 61681, 101, 9041, 2251, 152381, 185641, 224071, 211, 5791, 9161, 1021, 271, 53951, 401, 71261, 21821, 4051, 1151041, 259631, 132631, 6781, 1824841, 2031671, 41011, 20641, 4111, 23201
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Examples

			a(2) = 11 because 2^5 + 1 = 33 = 3 * 11.
a(3) = 61 because 3^5 + 1 = 244 = 2^2 * 61.
a(4) = 41 because 4^5 + 1 = 1025 = 5^2 * 41.
a(2272) = 2273 because 2272^5 + 1 = 11^2 * 311 * 491 * 1171 * 1231 * 2273.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^5 + 1][[-1, 1]], {n, 100}]

A240553 Greatest prime factor of n^10+1.

Original entry on oeis.org

2, 41, 1181, 61681, 9161, 6781, 4021, 1321, 42521761, 27961, 212601841, 85403261, 641, 1383881, 131381, 4278255361, 63541, 145501, 16936647121, 222361, 920421641, 150901, 272341, 1801385941, 632133361, 208518605101, 47763361, 84961, 470925821, 12109381
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^10 + 1][[-1, 1]], {n, 100}]

A237038 Primes p such that (2*p)^3 + 1 is a semiprime.

Original entry on oeis.org

2, 3, 11, 29, 53, 179, 191, 491, 641, 659, 683, 1103, 1499, 1901, 2129, 2543, 2549, 3803, 3851, 4271, 4733, 4943, 5303, 5441, 6101, 6329, 6449, 7193, 7211, 8093, 8513, 9059, 9419, 10091, 10271, 10733, 10781, 11321, 12203, 12821, 13451, 14561, 15233, 15803, 17159, 17333, 18131, 19373, 19919
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

Same as Sophie Germain primes p such that 4*p^2 - 2*p + 1 is also prime (because (2*p)^3 + 1 = (2*p + 1)(4*p^2 - 2*p + 1)).
Primes in A237037.
For n>1, 8*a(n)^3 is a solution for the equation phi(x+1) - phi(x) = x/2. - Farideh Firoozbakht, Dec 17 2014

Examples

			11 is prime and (2*11)^3 + 1 = 10649 = 23*463 is a semiprime, so 11 is a member.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]
    Select[Prime[Range[2500]],PrimeOmega[(2#)^3+1]==2&] (* Harvey P. Dale, Jun 28 2021 *)

Formula

a(n) = (1/2)*(A237039(n)-1)^(1/3).

A237039 Semiprimes of the form (2*p)^3 + 1, where p is prime.

Original entry on oeis.org

65, 217, 10649, 195113, 1191017, 45882713, 55742969, 946966169, 2106997769, 2289529433, 2548895897, 10735357817, 26946035993, 54958685609, 77199941513, 131561576057, 132495001193, 440016501017, 456888832409, 623273556089, 848202406697, 966188398457
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Examples

			(2*2)^3 + 1 = 65 = 5*13 is a semiprime, so a(1) = 2.
		

Crossrefs

Programs

  • Mathematica
    L = Select[Range[5000], PrimeQ[#] && PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]; (2 L)^3 + 1
    Select[Table[(2p)^3+1,{p,Prime[Range[1000]]}],PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 21 2021 *)

Formula

a(n) = (2*A237038(n))^3 + 1.

A240549 Greatest prime factor of n^6+1.

Original entry on oeis.org

2, 13, 73, 241, 601, 97, 181, 109, 6481, 9901, 1117, 20593, 28393, 1033, 3877, 673, 83233, 457, 769, 12277, 3181, 1489, 7549, 577, 390001, 2521, 530713, 47221, 421, 809101, 922561, 1321, 91141, 1249, 5413, 1678321, 144061, 2083693, 2311921, 41941, 1993, 4621
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^6 + 1][[-1, 1]], {n, 100}]
Showing 1-10 of 20 results. Next