A096173 Numbers k such that k^3+1 is an odd semiprime.
2, 4, 6, 16, 18, 22, 28, 42, 58, 60, 70, 72, 78, 100, 102, 106, 112, 148, 156, 162, 190, 210, 232, 280, 310, 330, 352, 358, 382, 396, 448, 456, 490, 568, 606, 672, 756, 786, 820, 826, 828, 856, 858, 876, 928, 970, 982, 1008, 1012, 1030, 1068, 1092, 1108, 1150
Offset: 1
Keywords
Examples
a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..2086
Crossrefs
Programs
-
Magma
[n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
-
Maple
select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i,i=1..1000)]); # Robert Israel, Dec 20 2015
-
Mathematica
Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
-
PARI
for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
Formula
Extensions
Corrected by Zak Seidov, Mar 08 2006
Comments