cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A240548 Greatest prime factor of n^5 + 1.

Original entry on oeis.org

2, 11, 61, 41, 521, 101, 191, 331, 1181, 9091, 13421, 19141, 2411, 101, 1531, 61681, 101, 9041, 2251, 152381, 185641, 224071, 211, 5791, 9161, 1021, 271, 53951, 401, 71261, 21821, 4051, 1151041, 259631, 132631, 6781, 1824841, 2031671, 41011, 20641, 4111, 23201
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Examples

			a(2) = 11 because 2^5 + 1 = 33 = 3 * 11.
a(3) = 61 because 3^5 + 1 = 244 = 2^2 * 61.
a(4) = 41 because 4^5 + 1 = 1025 = 5^2 * 41.
a(2272) = 2273 because 2272^5 + 1 = 11^2 * 311 * 491 * 1171 * 1231 * 2273.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^5 + 1][[-1, 1]], {n, 100}]

A240552 Greatest prime factor of n^9+1.

Original entry on oeis.org

2, 19, 37, 109, 5167, 46441, 117307, 87211, 530713, 52579, 590077, 1801, 937, 132049, 811, 38737, 5653, 465841, 236377, 69481, 613, 5966803, 1117, 7561, 6597973, 102966067, 19927, 102547, 10435069, 120871, 1538083, 18837001, 221401, 745903, 612740917, 55117
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^9 + 1][[-1, 1]], {n, 100}]
  • PARI
    a(n) = vecmax(factor(n^9+1)[,1]); \\ Michel Marcus, Dec 17 2017

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-3 of 3 results.