cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A357127 a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 1, 307, 1, 127, 421, 463, 1, 79, 601, 31, 37, 757, 271, 67, 1, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 1, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907, 109, 73, 613
Offset: 2

Views

Author

Mohammed Bouras, Sep 13 2022

Keywords

Comments

All the primes in this sequence appear exactly twice.
The new primes encountered seem to match the terms of A256148 for n>1. Bill McEachen, Oct 13 2022

Examples

			a(2) = a(a(2) - 2 - 1) = a(7 - 2 - 1) = a(4).
a(3) = a(9) = 3 + 9 + 1 = 13.
a(5) = a(25) = gcd(5^2 + 5 + 1, 25^2 + 25 + 1) = 31.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A357127(n): return m if (m:=max(primefactors(n*(n+1)+1))) > n else 1 # Chai Wah Wu, Oct 15 2022

Formula

Conjecture 1: If a(n) != 1, then a(n) = a(a(n) - n - 1).
Conjecture 2: If n != m and a(n) = a(m), then
a(n) = gcd(n^2 + n + 1, m^2 + m + 1) = n + m + 1.

A081256 Greatest prime factor of n^3 + 1.

Original entry on oeis.org

2, 3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 7, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 19, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

Record values appear to match the terms of A002383 for n>1. - Bill McEachen, Oct 18 2023

Crossrefs

Programs

  • Maple
    A081256 := proc(n)
        A006530(n^3+1) ;
    end proc:
    seq(A081256(n),n=1..20) ; # R. J. Mathar, Feb 13 2014
  • Mathematica
    Table[Max[Transpose[FactorInteger[n^3 + 1]][[1]]], {n, 25}]
  • PARI
    a(n)=my(f=factor(n^3+1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A081256(n)=vecmax(factor(n^3+1)[,1]) \\ It seems slightly slower to get the last element using ...[-1..-1][1]. - M. F. Hasler, Jun 15 2018

Formula

a(n) = A006530(A001093(n)). - M. F. Hasler, Jun 13 2018
a(n) >= 31 for n >= 70 (Buchmann et al., 1991). - Amiram Eldar, Oct 25 2024

Extensions

More terms from Harvey P. Dale, Mar 22 2003
More terms from Hugo Pfoertner, Jun 20 2004

A096175 Numbers k such that k^3-1 is an odd semiprime.

Original entry on oeis.org

6, 8, 12, 14, 20, 24, 38, 54, 62, 80, 90, 110, 138, 150, 164, 168, 192, 194, 272, 278, 314, 332, 348, 398, 402, 434, 500, 572, 642, 644, 720, 728, 762, 798, 812, 860, 864, 878, 920, 992, 1020, 1022, 1070, 1092, 1098, 1118, 1130, 1182, 1202, 1230, 1260, 1308
Offset: 1

Views

Author

Hugo Pfoertner, Jun 22 2004

Keywords

Examples

			a(1)=6 because 6^3 - 1 = 216 - 1 = 215 = 5*43.
		

Crossrefs

Cf. A096173: k^3+1 is an odd semiprime; A081257: largest prime factor of k^3-1; A096176 (k^3-1)/(k-1) is prime; A046315.

Programs

  • PARI
    forstep (k=2,1310,2,if(bigomega(k^3-1)==2,print1(k,", ")))
    \\ Hugo Pfoertner, Nov 28 2017

A256148 Primitive prime factors of the cyclotomic polynomial sequence Phi(3, k) (or Phi(6, k)) in the order in which they occur.

Original entry on oeis.org

3, 7, 13, 31, 43, 19, 73, 37, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 757, 271, 67, 331, 151, 1123, 397, 97, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 181, 2551, 379, 919, 409, 2971, 3307, 163, 3541, 523, 3907, 613, 4423, 4831, 1657, 5113, 751
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(3,k) = k^2 + k + 1 and Phi(6,k) = k^2 - k + 1.
Interesting scatter plot.
The terms correspond to the new primes of A081257 in the order of their appearance for n>1 and when A081257(m)>m. - Bill McEachen, Oct 13 2022

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[6, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(6,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A081258 Numbers k > 1 such that k^3 - 1 (or equivalently k^2 + k + 1) has no prime factor greater than k.

Original entry on oeis.org

16, 18, 22, 30, 49, 67, 68, 74, 79, 81, 87, 100, 102, 121, 135, 137, 146, 149, 154, 158, 159, 163, 165, 169, 172, 178, 181, 191, 211, 221, 229, 230, 235, 256, 262, 263, 269, 273, 277, 291, 292, 301, 305, 313, 315, 324, 326, 334, 352, 361, 372, 373, 380, 393
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

One might also include 1 as a term here. - R. J. Mathar, Oct 11 2011

Examples

			16 is a term: 16^3 - 1 = 4095 = 3*3*5*7*13.
		

Crossrefs

Programs

  • Maple
    isA081258 := proc(n)
            numtheory[factorset](n^3-1) ;
            if max(op(%)) <= n then
                    true;
            else
                    false;
            end if;
    end proc;
    for n from 1 to 400 do
            if isA081258(n) then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 11 2011
  • Mathematica
    Select[Range[2, 1000], FactorInteger[#^3 - 1][[-1, 1]] <= #&] (* Jean-François Alcover, Jun 15 2020 *)

Extensions

Name changed by Robert Israel, Nov 11 2016

A096176 Numbers k such that (k^3-1)/(k-1) is prime.

Original entry on oeis.org

2, 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119, 131, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 167, 168, 173, 176, 188, 189, 192, 194, 203, 206, 209, 215, 218
Offset: 1

Views

Author

Hugo Pfoertner, Jun 22 2004

Keywords

Comments

Numbers k > 1 such that k^2 + k + 1 is a prime. - Vincenzo Librandi, Nov 16 2010
Therefore essentially the same as A002384. - Georg Fischer, Oct 06 2018

Examples

			a(5) = 8 because (8^3-1)/(8-1) = 511/7 = 73 is prime.
		

Crossrefs

Cf. A096174 (n^3+1)/(n+1) is prime, A081257 largest prime factor of n^3-1, A096175 n^3-1 is an odd semiprime.
Cf. A028491, A004061. - Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Cf. A002384.

Programs

Extensions

3 and 5 added by Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Corrected terms, including many previously omitted terms, from Harvey P. Dale, Sep 10 2009

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-7 of 7 results.