A363102 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-2))))).
7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 1, 839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 1, 47, 73, 881, 1847, 967, 1, 151, 2207, 1151, 2399, 1249, 113, 193, 401, 1, 3023, 1567, 191, 41, 71, 257, 3719, 113, 3967, 89, 103, 311
Offset: 3
Keywords
Examples
a(5) = (5^2 - 2)/gcd(5^2 - 2, 2*A051403(5-3) + 5*A051403(5-4))= 23. a(6) = a(11) = 6 + 11 = 17. a(7) = a(40) = 7 + 40 = 47.
Links
- Bill McEachen, Table of n, a(n) for n = 3..10002
- Mohammed Bouras, The Distribution Of Prime Numbers And Continued Fractions, (ppt) (2022)
Programs
-
PARI
a051403(n) = (n+2)*sum(k=0, n, k!)/2; a(n) = (n^2 - 2)/gcd(n^2 - 2, 2*a051403(n-3) + n*a051403(n-4)); \\ Michel Marcus, May 24 2023
Comments