cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363102 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-2))))).

Original entry on oeis.org

7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 1, 839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 1, 47, 73, 881, 1847, 967, 1, 151, 2207, 1151, 2399, 1249, 113, 193, 401, 1, 3023, 1567, 191, 41, 71, 257, 3719, 113, 3967, 89, 103, 311
Offset: 3

Views

Author

Mohammed Bouras, May 19 2023

Keywords

Comments

Conjecture 1: The sequence contains only 1's and primes.
Conjecture 2: All prime numbers appear either twice (same as A356247 and A357127) or three times.
Similar terms of A164314.
Conjecture: Record values correspond to A028871(m), m > 1. - Bill McEachen, Mar 06 2024
a(n) = 1 positions appear to correspond to A060515(m), m > 2. - Bill McEachen, Aug 05 2024

Examples

			a(5) = (5^2 - 2)/gcd(5^2 - 2, 2*A051403(5-3) + 5*A051403(5-4))= 23.
a(6) = a(11) = 6 + 11 = 17.
a(7) = a(40) = 7 + 40 = 47.
		

Crossrefs

Programs

  • PARI
    a051403(n) = (n+2)*sum(k=0, n, k!)/2;
    a(n) = (n^2 - 2)/gcd(n^2 - 2, 2*a051403(n-3) + n*a051403(n-4)); \\ Michel Marcus, May 24 2023

Formula

a(n) = (n^2 - 2)/gcd(n^2 - 2, 2*A051403(n-3) + n*A051403(n-4)).
a(n) = A164314(n) if A164314(n) > n.
If a(n) = a(m) and n < m < a(n), then a(n) = n + m.
Showing 1-1 of 1 results.