cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081257 a(n) is the greatest prime factor of (n^3 - 1).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 2

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

The record values here (as well as those for A081256) appear to match the terms of A002383 for n > 1. - Bill McEachen, Jun 19 2023

Examples

			a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
		

Crossrefs

Cf. A096175 (n^3-1 is an odd semiprime), A096176 ((n^3-1)/(n-1) is prime).

Programs

Formula

a(n) = A006530(A068601(n)). - Michel Marcus, Jun 19 2023

Extensions

More terms from Hugo Pfoertner, Jun 21 2004

A268043 Numbers k such that k^3 - 1 and k^3 + 1 are both semiprimes.

Original entry on oeis.org

6, 1092, 1932, 2730, 4158, 6552, 11172, 25998, 30492, 55440, 76650, 79632, 85092, 102102, 150990, 152082, 152418, 166782, 211218, 235662, 236208, 248640, 264600, 298410, 300300, 301182, 317772, 380310, 387198, 441798, 476028, 488418
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2016

Keywords

Comments

Obviously, k+1 and k-1 are always prime numbers.
If k is a term then m = (k - 1) * (k^2 + k + 1) is a term of A169635, i.e., A001157(m) = A001157(m+2) (De Koninck, 2002). - Amiram Eldar, Apr 19 2024

Examples

			a(1) = 6 because 6^3-1 = 215 = 5*43 and 6^3+1 = 217 = 7*31, therefore 215, 217 are both semiprimes.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [2..300000] | IsSemiprime(n^3+1) and IsSemiprime(n^3-1) ];
    
  • Mathematica
    Select[Range[500000], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 2 &]
    Select[Range[10^6], And @@ PrimeQ[{# - 1, # + 1, #^2 - # + 1, #^2 + # + 1}] &] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    isok(n) = (bigomega(n^3-1) == 2) && (bigomega(n^3+1) == 2); \\ Michel Marcus, Jan 26 2016
    
  • PARI
    is(n) = isprime(n - 1) && isprime(n + 1) && isprime(n^2 - n + 1) && isprime(n^2 + n + 1); \\ Amiram Eldar, Apr 19 2024

A096176 Numbers k such that (k^3-1)/(k-1) is prime.

Original entry on oeis.org

2, 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119, 131, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 167, 168, 173, 176, 188, 189, 192, 194, 203, 206, 209, 215, 218
Offset: 1

Views

Author

Hugo Pfoertner, Jun 22 2004

Keywords

Comments

Numbers k > 1 such that k^2 + k + 1 is a prime. - Vincenzo Librandi, Nov 16 2010
Therefore essentially the same as A002384. - Georg Fischer, Oct 06 2018

Examples

			a(5) = 8 because (8^3-1)/(8-1) = 511/7 = 73 is prime.
		

Crossrefs

Cf. A096174 (n^3+1)/(n+1) is prime, A081257 largest prime factor of n^3-1, A096175 n^3-1 is an odd semiprime.
Cf. A028491, A004061. - Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Cf. A002384.

Programs

Extensions

3 and 5 added by Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Corrected terms, including many previously omitted terms, from Harvey P. Dale, Sep 10 2009

A129295 Numbers m such that m^3 - 1 has no divisors d with 1 < d < m - 1.

Original entry on oeis.org

3, 4, 6, 8, 12, 14, 20, 24, 38, 54, 62, 80, 90, 110, 138, 150, 164, 168, 192, 194, 272, 278, 314, 332, 348, 398, 402, 434, 500, 572, 642, 644, 720, 728, 762, 798, 812, 860, 864, 878, 920, 992, 1020, 1022, 1070, 1092, 1098, 1118, 1130, 1182, 1202, 1230, 1260, 1308
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 09 2007

Keywords

Comments

Numbers m such that A129294(m) = #{1,m-1} = 2.
Essentially the same as A096175. Note that m^3 - 1 = (m - 1)*(m^2 + m + 1), so m - 1 must be prime. For m > 4, the smallest divisor > 1 of m^2 + m + 1 is no larger than sqrt(m^2 + m + 1) < m + 1 unless m^2 + m + 1 is also prime. Also note that gcd(m, m^2 + m 1 ) = gcd(m - 1, m^2 + m + 1) = 1, so m^2 + m + 1 must also be prime, making m^3 - 1 a semiprime. - Jianing Song, Aug 01 2018

Examples

			{1,11,157,1727} is the set of divisors of 12^3 - 1, therefore 12 is a term, since A129294(12) = #{1,11} = 2.
		

Crossrefs

Formula

a(n) = A096175(n-2) for n > 2. - Jianing Song, Aug 01 2018

A242262 Semiprimes of the form k^3 - 1.

Original entry on oeis.org

26, 215, 511, 1727, 2743, 7999, 13823, 54871, 157463, 238327, 511999, 728999, 1330999, 2628071, 3374999, 4410943, 4741631, 7077887, 7301383, 20123647, 21484951, 30959143, 36594367, 42144191, 63044791, 64964807, 81746503, 124999999, 187149247, 264609287, 267089983
Offset: 1

Views

Author

K. D. Bajpai, May 09 2014

Keywords

Comments

From Jianing Song, Aug 01 2018: (Start)
k^3 - 1 is a term iff k - 1 and k^2 + k + 1 are both prime.
Is this sequence infinite? That is, are there infinitely many primes p such that p^2 + 3*p + 3 is also prime?
(End)

Examples

			a(1) = 26 = 3^3 - 1 = 26 = 2 * 13, is a semiprime.
a(2) = 215 = 6^3 - 1 = 215 = 5 * 43, is a semiprime.
		

Crossrefs

Cf. A237040 (semiprimes of the form k^3 + 1).

Programs

  • Maple
    with(numtheory): A242262:= proc() local k; k:= x^3-1; if bigomega(k) = 2  then RETURN (k); fi; end: seq(A242262 (),x=1..1000);
  • Mathematica
    Select[Table[n^3 - 1, {n, 100}], PrimeOmega[#] == 2 &]
    Select[Range[700]^3-1,PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 25 2019 *)

Formula

a(n) = A096175(n-1)^3 - 1 for n > 1. - Jianing Song, Aug 01 2018

Extensions

First Mathematica program corrected by Harvey P. Dale, Jan 25 2019

A261435 Numbers k such that k^5-1 is a semiprime.

Original entry on oeis.org

12, 24, 30, 44, 62, 68, 74, 110, 164, 198, 308, 492, 572, 594, 662, 728, 770, 824, 854, 860, 864, 942, 954, 968, 1152, 1154, 1284, 1382, 1452, 1668, 1694, 1748, 1760, 1788, 1914, 2090, 2252, 2274, 2340, 2382, 2438, 2448, 2648, 2658, 2664, 2690, 2714, 2790
Offset: 1

Views

Author

Vincenzo Librandi, Aug 20 2015

Keywords

Comments

Numbers k such that k-1 and k^4+k^3+k^2+k+1 are both prime.

Examples

			a(1) = 12 because 12^5-1 = 248831 = 11*22621.
		

Crossrefs

Cf. numbers k such that k^p-1 is a semiprime, where p is prime: A096175(p=3), this sequence (p=5), A261436 (p=7), A261460 (p=11).
Cf. A104238.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..5000] | IsSemiprime(s) where s is n^5- 1];
    
  • Mathematica
    Select[Range[5000], PrimeOmega[#^5 - 1] == 2 &]
  • PARI
    isok(n)=bigomega(n^5-1)==2 \\ Anders Hellström, Aug 20 2015

A268186 Numbers n such that n^2 + 2, n^2 - 2, n + 2 and n - 2 are all semiprimes.

Original entry on oeis.org

12, 53, 84, 204, 207, 251, 379, 413, 456, 471, 483, 631, 687, 705, 765, 783, 1079, 1135, 1140, 1167, 1269, 1335, 1347, 1395, 1475, 1515, 1587, 1641, 1709, 1767, 1851, 1855, 1943, 1959, 2049, 2157, 2319, 2325, 2575, 2843, 2865, 3099, 3153, 3225, 3267, 3601, 3779
Offset: 1

Author

K. D. Bajpai, Jan 28 2016

Keywords

Examples

			12 appears in the sequence because:
  12^2 + 2 = 146 = 2*73
  12^2 - 2 = 142 = 2*71
  12 + 2   = 14  = 2*7
  12 - 2   = 10  = 2*5 are all semiprimes.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func;[ n : n in [2..10000] | IsSemiprime(n^2 + 2) and  IsSemiprime(n^2 - 2) and  IsSemiprime(n + 2) and  IsSemiprime(n - 2)];
  • Maple
    with(numtheory): select(n -> (bigomega(n^2 + 2)=2 and bigomega(n^2 - 2)=2 and bigomega(n + 2)=2 and bigomega(n - 2)=2), [seq(n, n=1..10000)]);
  • Mathematica
    Select[Range[10000], PrimeOmega[#^2 + 2] == PrimeOmega[#^2 - 2] == PrimeOmega[# + 2] == PrimeOmega[# - 2] == 2 &]
  • PARI
    for(n = 1, 10000,if(bigomega(n^2 + 2) == 2 && bigomega(n^2 - 2) == 2  && bigomega(n + 2) == 2 && bigomega(n - 2) == 2, print1(n, ", ")))
    

A317138 Numbers k such that (2k)^3 - 1 is a semiprime.

Original entry on oeis.org

3, 4, 6, 7, 10, 12, 19, 27, 31, 40, 45, 55, 69, 75, 82, 84, 96, 97, 136, 139, 157, 166, 174, 199, 201, 217, 250, 286, 321, 322, 360, 364, 381, 399, 406, 430, 432, 439, 460, 496, 510, 511, 535, 546, 549, 559, 565, 591, 601, 615, 630, 654, 717, 720, 724, 727, 742
Offset: 1

Author

Jianing Song, Aug 01 2018

Keywords

Comments

Numbers k such that 2k - 1 and 4k^2 + 2k + 1 are both prime.

Examples

			From _K. D. Bajpai_, Nov 16 2019: (Start)
a(3) = 6 is a term because (2*6)^3 - 1 = 1727 = 11*157, which is a semiprime.
a(4) = 7 is a term because (2*7)^3 - 1 = 2743 = 13*211, which is a semiprime.
9 is not in the sequence because (2*9)^3 - 1 = 5831 = 7*7*7*17, which is not semiprime.
(End)
		

Crossrefs

Cf. A237037 (numbers k such that (2k)^3 + 1 is a semiprime).

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..800] | IsSemiprime(s) where s is (2*n)^3-1]; // Vincenzo Librandi, Aug 04 2018
  • Maple
    issp:= n-> not isprime(n) and numtheory[bigomega](n)=2:
    select( n-> issp((2*n)^3-1),  [seq(n, n=1..200)]); # K. D. Bajpai, Nov 16 2019
  • Mathematica
    Select[Range@ 750, PrimeOmega[(2 #)^3 - 1] == 2 &] (* Michael De Vlieger, Aug 02 2018 *)
  • PARI
    for(k=1,500,if(bigomega((2*k)^3-1)==2,print1(k,", ")))
    

Formula

a(n) = A096175(n)/2 = (1/2)*(A242262(n) + 1)^(1/3).
Showing 1-8 of 8 results.