cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A169635 Integers m such that sigma_2(m) = sigma_2(m + 2) where sigma_2(m) is the sum of squares of divisors of m (A001157).

Original entry on oeis.org

24, 215, 280, 1079, 947519, 1362239, 2230271, 14939999, 19720007, 32509439, 45581759, 45841247, 49436927, 78436511, 82842911, 101014631, 166828031, 225622151, 225757799, 250999559, 377129087, 554998751, 619606439, 846765431, 1204092287, 1302170687, 1710035711
Offset: 1

Views

Author

Michel Lagneau, Apr 04 2010

Keywords

Comments

The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)

Examples

			For m=24, sigma_2(24) = sigma_2(26) = 850.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
  • Mathematica
    Select[Range[10^9], DivisorSigma[2,#] == DivisorSigma[2,#+2]&]
  • PARI
    is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
    
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4);} \\ Amiram Eldar, Apr 19 2024

Extensions

a(25)-a(27) from Donovan Johnson, Apr 14 2013

A268186 Numbers n such that n^2 + 2, n^2 - 2, n + 2 and n - 2 are all semiprimes.

Original entry on oeis.org

12, 53, 84, 204, 207, 251, 379, 413, 456, 471, 483, 631, 687, 705, 765, 783, 1079, 1135, 1140, 1167, 1269, 1335, 1347, 1395, 1475, 1515, 1587, 1641, 1709, 1767, 1851, 1855, 1943, 1959, 2049, 2157, 2319, 2325, 2575, 2843, 2865, 3099, 3153, 3225, 3267, 3601, 3779
Offset: 1

Views

Author

K. D. Bajpai, Jan 28 2016

Keywords

Examples

			12 appears in the sequence because:
  12^2 + 2 = 146 = 2*73
  12^2 - 2 = 142 = 2*71
  12 + 2   = 14  = 2*7
  12 - 2   = 10  = 2*5 are all semiprimes.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func;[ n : n in [2..10000] | IsSemiprime(n^2 + 2) and  IsSemiprime(n^2 - 2) and  IsSemiprime(n + 2) and  IsSemiprime(n - 2)];
  • Maple
    with(numtheory): select(n -> (bigomega(n^2 + 2)=2 and bigomega(n^2 - 2)=2 and bigomega(n + 2)=2 and bigomega(n - 2)=2), [seq(n, n=1..10000)]);
  • Mathematica
    Select[Range[10000], PrimeOmega[#^2 + 2] == PrimeOmega[#^2 - 2] == PrimeOmega[# + 2] == PrimeOmega[# - 2] == 2 &]
  • PARI
    for(n = 1, 10000,if(bigomega(n^2 + 2) == 2 && bigomega(n^2 - 2) == 2  && bigomega(n + 2) == 2 && bigomega(n - 2) == 2, print1(n, ", ")))
    

A276564 Perfect powers k (exponent greater than 1) such that k-1 and k+1 are both semiprime.

Original entry on oeis.org

144, 216, 900, 1764, 2048, 3600, 10404, 11664, 39204, 97344, 213444, 248832, 272484, 360000, 656100, 685584, 1040400, 1102500, 1127844, 1633284, 2108304, 2214144, 3504384, 3802500, 4112784, 4536900, 4588164, 5475600, 7784100, 7851204, 8388608, 8820900, 9000000, 9734400
Offset: 1

Author

Antonio Roldán, Nov 16 2016

Keywords

Comments

Intersection of A001597 and A124936. - Michel Marcus, Dec 03 2016

Examples

			2048 = 2^11, and both 2047 = 23*89 and 2049 = 3*683 are semiprimes.
		

Programs

  • Mathematica
    Select[Range[10^7], And[GCD @@ FactorInteger[#][[All, 2]] > 1, Union@ # == {2} &@ Map[PrimeOmega, {# - 1, # + 1}]] &] (* Michael De Vlieger, Dec 07 2016, after Ant King at A001597 *)
  • PARI
    for(i=2,10^7,if(ispower(i)&&bigomega(i-1)==2&&bigomega(i+1)==2,print1(i,", ")))

A276565 Oblong numbers n such that n - 1 and n + 1 are both semiprime.

Original entry on oeis.org

56, 552, 870, 1056, 1190, 1640, 1892, 2652, 4032, 5256, 5402, 6806, 8372, 9120, 9506, 9702, 10920, 11772, 12656, 12882, 15006, 15252, 15500, 16256, 16770, 17556, 18632, 23256, 24492, 27722, 29070, 30800, 33306, 33672, 34410, 36290, 40200, 40602, 44310, 45582, 46872, 49506
Offset: 1

Author

Antonio Roldán, Nov 16 2016

Keywords

Comments

Intersection of A002378 and A124936. - Michel Marcus, Nov 26 2016

Examples

			1640 is oblong (1640 = 40*41) and 1639 = 11*149, 1641 = 3*547 are both semiprime.
		

Programs

  • Maple
    select(t -> numtheory:-bigomega(t+1)=2 and numtheory:-bigomega(t-1)=2, [seq(i*(i+1),i=1..1000)]); # Robert Israel, Nov 28 2016
  • PARI
    for(i=1,250,n=i*(i+1);if(bigomega(n-1)==2&&bigomega(n+1)==2,print1(n,", ")))

A329727 Numbers k such that k^3 +- 2 and k +- 2 are prime.

Original entry on oeis.org

129, 1491, 1875, 2709, 5655, 6969, 10335, 14325, 14421, 17319, 26559, 35109, 37509, 43719, 50229, 52629, 101871, 102795, 104325, 105501, 120429, 127599, 132699, 136395, 137829, 157521, 172425, 173685, 179481, 186189, 191829, 211371, 219681, 221199, 229215, 234195
Offset: 1

Author

K. D. Bajpai, Nov 19 2019

Keywords

Comments

All terms in this sequence are divisible by 3.

Examples

			a(1) = 129:
  129^3 + 2 = 2146691;
  129^3 - 2 = 2146687;
  129   + 2 =     131;
  129   - 2 =     127; all four results are prime.
a(2) = 1491:
  1491^3 + 2 = 3314613773;
  1491^3 - 2 = 3314613769;
  1491   + 2 =       1493;
  1491   - 2 =       1489; all four results are prime.
		

Crossrefs

Intersection of A038599, A067200, and A087679.

Programs

  • Magma
    [k:k in [1..250000]|forall{m:m in [-2,2]|IsPrime(k+m) and IsPrime(k^3+m)}]; // Marius A. Burtea, Nov 20 2019
    
  • Mathematica
    Select[Range[500000], PrimeQ[#^3 + 2] && PrimeQ[#^3 - 2] && PrimeQ[# + 2] && PrimeQ[# - 2] &]
  • PARI
    isok(k) = isprime(k-2) && isprime(k+2) && isprime(k^3-2) && isprime(k^3+2); \\ Michel Marcus, Nov 24 2019
    
  • PARI
    list(lim)=my(v=List(),p=127,k); forprime(q=131,lim+2,if(q-p==4 && isprime((k=p+2)^3-2) && isprime(k^3+2), listput(v,k)); p=q); Vec(v) \\ Charles R Greathouse IV, May 06 2020

A276905 Numbers k such that k^5-1 and k^5+1 are semiprimes.

Original entry on oeis.org

12, 1452, 11352, 79398, 146520, 281622, 352110, 536778, 643302, 680988, 723492, 739200, 878988, 992112, 1115268, 1189650, 1397022, 1698378, 1698510, 1728540, 1806222, 2486220, 2873178, 3031578, 3571458, 3946140, 4467012, 4983858, 5064510, 5135658, 5567562, 5753352
Offset: 1

Author

Gary E. Davis, Sep 21 2016

Keywords

Crossrefs

Intersection of A104238 and A261435.

Programs

  • Mathematica
    upper=600000;
    Select[Range[upper],
    PrimeOmega[#^5 - 1] == PrimeOmega[#^5 + 1] == 2 &]
  • PARI
    isok(n) = (bigomega(n^5-1)==2) && (bigomega(n^5+1)==2); \\ Michel Marcus, Sep 22 2016

Extensions

More terms from Altug Alkan, Sep 30 2016

A279272 Numbers k such that k^7 - 1 and k^7 + 1 are semiprimes.

Original entry on oeis.org

72, 282, 9000, 13932, 19212, 22158, 49920, 65538, 72228, 78888, 144408, 169320, 201492, 201828, 218460, 234540, 270030, 296478, 325080, 355008, 365748, 411000, 448872, 461052, 484152, 504618, 555522, 558252, 586362, 622620, 674058, 981810, 1067490, 1095792
Offset: 1

Author

Vincenzo Librandi, Dec 09 2016

Keywords

Comments

Since k^7 - 1 = (k-1)*(k^6 + k^5 + k^4 + k^3 + k^2 + k + 1) and k^7 + 1 = (k+1)*(k^6 - k^5 + k^4 - k^3 + k^2 - k + 1) (and since there is no term less than 3, so k-1 must have at least one prime factor), this sequence lists the numbers k such that k-1, k+1, k^6 + k^5 + k^4 + k^3 + k^2 + k + 1, and k^6 - k^5 + k^4 - k^3 + k^2 - k + 1 are all prime. - Jon E. Schoenfield, Dec 14 2016

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [4..10000] | IsSemiprime(n^7-1)and IsSemiprime(n^7+1)];
  • Mathematica
    Select[Range[100000], PrimeOmega[#^7 - 1] == PrimeOmega[#^7 + 1]== 2 &]

Extensions

More terms from Jon E. Schoenfield, Dec 14 2016
Showing 1-7 of 7 results.