A268043 Numbers k such that k^3 - 1 and k^3 + 1 are both semiprimes.
6, 1092, 1932, 2730, 4158, 6552, 11172, 25998, 30492, 55440, 76650, 79632, 85092, 102102, 150990, 152082, 152418, 166782, 211218, 235662, 236208, 248640, 264600, 298410, 300300, 301182, 317772, 380310, 387198, 441798, 476028, 488418
Offset: 1
Examples
a(1) = 6 because 6^3-1 = 215 = 5*43 and 6^3+1 = 217 = 7*31, therefore 215, 217 are both semiprimes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck, On the solutions of sigma_2(n) = sigma_2(n + l), Ann. Univ. Sci. Budapest Sect. Comput. 21 (2002), 127-133.
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [2..300000] | IsSemiprime(n^3+1) and IsSemiprime(n^3-1) ];
-
Mathematica
Select[Range[500000], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 2 &] Select[Range[10^6], And @@ PrimeQ[{# - 1, # + 1, #^2 - # + 1, #^2 + # + 1}] &] (* Amiram Eldar, Apr 19 2024 *)
-
PARI
isok(n) = (bigomega(n^3-1) == 2) && (bigomega(n^3+1) == 2); \\ Michel Marcus, Jan 26 2016
-
PARI
is(n) = isprime(n - 1) && isprime(n + 1) && isprime(n^2 - n + 1) && isprime(n^2 + n + 1); \\ Amiram Eldar, Apr 19 2024
Comments