cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A268043 Numbers k such that k^3 - 1 and k^3 + 1 are both semiprimes.

Original entry on oeis.org

6, 1092, 1932, 2730, 4158, 6552, 11172, 25998, 30492, 55440, 76650, 79632, 85092, 102102, 150990, 152082, 152418, 166782, 211218, 235662, 236208, 248640, 264600, 298410, 300300, 301182, 317772, 380310, 387198, 441798, 476028, 488418
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2016

Keywords

Comments

Obviously, k+1 and k-1 are always prime numbers.
If k is a term then m = (k - 1) * (k^2 + k + 1) is a term of A169635, i.e., A001157(m) = A001157(m+2) (De Koninck, 2002). - Amiram Eldar, Apr 19 2024

Examples

			a(1) = 6 because 6^3-1 = 215 = 5*43 and 6^3+1 = 217 = 7*31, therefore 215, 217 are both semiprimes.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [2..300000] | IsSemiprime(n^3+1) and IsSemiprime(n^3-1) ];
    
  • Mathematica
    Select[Range[500000], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 2 &]
    Select[Range[10^6], And @@ PrimeQ[{# - 1, # + 1, #^2 - # + 1, #^2 + # + 1}] &] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    isok(n) = (bigomega(n^3-1) == 2) && (bigomega(n^3+1) == 2); \\ Michel Marcus, Jan 26 2016
    
  • PARI
    is(n) = isprime(n - 1) && isprime(n + 1) && isprime(n^2 - n + 1) && isprime(n^2 + n + 1); \\ Amiram Eldar, Apr 19 2024

A372114 Sum of squares of divisors of the numbers m such that m and m+2 have the same sum of squares of divisors.

Original entry on oeis.org

850, 48100, 110500, 1171300, 897826072900, 1855703820100, 4974132151300, 223203708201604, 388880538297700, 1056863959716100, 2077699792101700, 2101425630304900, 2444010061663300, 6152287246125700, 6862948725741700, 10203957350659300, 27831593408440900, 50905357902220900
Offset: 1

Views

Author

Amiram Eldar, Apr 19 2024

Keywords

Comments

All the terms are even.
There are only 2 equal consecutive terms in A001157: sigma_2(6) = sigma_2(7) = 50.

Crossrefs

Similar sequences: A053215, A053249.

Programs

  • Mathematica
    seq[mmax_] := Module[{s1 = DivisorSigma[2, 1], s2 = DivisorSigma[2, 2], s3, s4, s={}}, Do[s3 = DivisorSigma[2, m]; s4 = DivisorSigma[2, m+1]; If[s1 == s3, AppendTo[s, s1]]; If[s2 == s4, AppendTo[s, s2]]; s1 = s3; s2 = s4, {m, 3, mmax, 2}]; s]; seq[10^6]
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(s1, ", ")); if(s2 == s4, print1(s2, ", ")); s1 = s3; s2 = s4);}

Formula

a(n) = A001157(A169635(n)).
Showing 1-2 of 2 results.