cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357127 a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 1, 307, 1, 127, 421, 463, 1, 79, 601, 31, 37, 757, 271, 67, 1, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 1, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907, 109, 73, 613
Offset: 2

Views

Author

Mohammed Bouras, Sep 13 2022

Keywords

Comments

All the primes in this sequence appear exactly twice.
The new primes encountered seem to match the terms of A256148 for n>1. Bill McEachen, Oct 13 2022

Examples

			a(2) = a(a(2) - 2 - 1) = a(7 - 2 - 1) = a(4).
a(3) = a(9) = 3 + 9 + 1 = 13.
a(5) = a(25) = gcd(5^2 + 5 + 1, 25^2 + 25 + 1) = 31.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A357127(n): return m if (m:=max(primefactors(n*(n+1)+1))) > n else 1 # Chai Wah Wu, Oct 15 2022

Formula

Conjecture 1: If a(n) != 1, then a(n) = a(a(n) - n - 1).
Conjecture 2: If n != m and a(n) = a(m), then
a(n) = gcd(n^2 + n + 1, m^2 + m + 1) = n + m + 1.

A108768 Primes that appear in the sequence p:=x^2+x+1, sieved with a quadratic sieve construction.

Original entry on oeis.org

3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 31, 37, 757, 271, 67, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907
Offset: 1

Views

Author

Bernhard Helmes (pi(AT)devalco.de), Jun 24 2005

Keywords

Comments

This sequence appears in a website available on web.archive (see Quadratic Sieve Construction link). There is a single appearance of the first term 3, while all other primes appear twice. See A256148 for a version of the sequence consistent with the current version of the website where each prime appears only once. - Ray Chandler, Jul 05 2015

Crossrefs

Programs

  • MuPAD
    // from Quadratic Sieve Construction link.
    liste_max:=10000;
    for x from 1 to liste_max do
        liste_x[x]:=x^2+x+1;
        liste_prim[x]:=1;
    end_for;
    x:=1;
    while (x1) then
         print ("Prim ", p, "x = ", x, isprime (p)) ;
         // Aussiebung
         while (stelleRay Chandler, Jul 05 2015

A256153 Primitive prime factors of the cyclotomic polynomial sequence Phi(5,k) in the order in which they occur.

Original entry on oeis.org

5, 31, 11, 71, 311, 2801, 151, 61, 41, 271, 3221, 22621, 30941, 3761, 4931, 88741, 2711, 911, 251, 40841, 245411, 292561, 346201, 521, 8641, 4561, 637421, 732541, 837931, 17351, 601, 1801, 39451, 22571, 49831, 101, 4271, 194681, 191, 401, 2625641, 579281
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(5,k) = k^4 + k^3 + k^2 + k + 1.
All terms end with the digit 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[5, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(5,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015
Showing 1-3 of 3 results.