cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001358 Semiprimes (or biprimes): products of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024

Examples

			From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
   4 = 2*2     46 = 2*23     91 = 7*13    141 = 3*47
   6 = 2*3     49 = 7*7      93 = 3*31    142 = 2*71
   9 = 3*3     51 = 3*17     94 = 2*47    143 = 11*13
  10 = 2*5     55 = 5*11     95 = 5*19    145 = 5*29
  14 = 2*7     57 = 3*19    106 = 2*53    146 = 2*73
  15 = 3*5     58 = 2*29    111 = 3*37    155 = 5*31
  21 = 3*7     62 = 2*31    115 = 5*23    158 = 2*79
  22 = 2*11    65 = 5*13    118 = 2*59    159 = 3*53
  25 = 5*5     69 = 3*23    119 = 7*17    161 = 7*23
  26 = 2*13    74 = 2*37    121 = 11*11   166 = 2*83
  33 = 3*11    77 = 7*11    122 = 2*61    169 = 13*13
  34 = 2*17    82 = 2*41    123 = 3*41    177 = 3*59
  35 = 5*7     85 = 5*17    129 = 3*43    178 = 2*89
  38 = 2*19    86 = 2*43    133 = 7*19    183 = 3*61
  39 = 3*13    87 = 3*29    134 = 2*67    185 = 5*37
(End)
		

References

  • Archimedeans Problems Drive, Eureka, 17 (1954), 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.

Crossrefs

Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.

Programs

  • Haskell
    a001358 n = a001358_list !! (n-1)
    a001358_list = filter ((== 2) . a001222) [1..]
    
  • Magma
    [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
    Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
    
  • PARI
    A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 2
    print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A001358(n):
        def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024

Formula

a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025

Extensions

More terms from James Sellers, Aug 22 2000

A002496 Primes of the form k^2 + 1.

Original entry on oeis.org

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence is infinite, but this has never been proved.
An equivalent description: primes of form P = (p1*p2*...*pm)^k + 1 where p1..pm are primes and k > 1, since then k must be even for P to be prime.
Also prime = p(n) if A054269(n) = 1, i.e., quotient-cycle-length = 1 in continued fraction expansion of sqrt(p). - Labos Elemer, Feb 21 2001
Also primes p such that phi(p) is a square.
Also primes of form x*y + z, where x, y and z are three successive numbers. - Giovanni Teofilatto, Jun 05 2004
It is a result that goes back to Mirsky that the set of primes p for which p-1 is squarefree has density A, where A = A005596 denotes the Artin constant. More precisely, Sum_{p <= x} mu(p-1)^2 = A*x/log x + o(x/log x) as x tends to infinity. Conjecture: Sum_{p <= x, mu(p-1)=1} 1 = (A/2)*x/log x + o(x/log x) and Sum_{p <= x, mu(p-1)=-1} 1 = (A/2)*x/log x + o(x/log x). - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Also primes of the form x^y + 1, where x > 0, y > 1. Primes of the form x^y - 1 (x > 0, y > 1) are the Mersenne primes listed in A000668(n) = {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...}. - Alexander Adamchuk, Mar 04 2007
With the exception of the first two terms {2,5}, the continued fraction (1 + sqrt(p))/2 has period 3. - Artur Jasinski, Feb 03 2010
With the exception of the first term {2}, congruent to 1 (mod 4). - Artur Jasinski, Mar 22 2011
With the exception of the first two terms, congruent to 1 or 17 (mod 20). - Robert Israel, Oct 14 2014
From Bernard Schott, Mar 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a square: A054755. So this sequence is a subsequence of A054755 and of A039770. Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If p prime = n^2 + 1, phi(p) = n^2 and cototient(p) = 1^2.
Except for 3, the four Fermat primes in A019434 {5, 17, 257, 65537}, belong to this sequence; with F_k = 2^(2^k) + 1, phi(F_k) = (2^(2^(k-1)))^2.
See the file "Subfamilies and subsequences" (& I) in A039770 for more details, proofs with data, comments, formulas and examples. (End)
In this sequence, primes ending with 7 seem to appear twice as often as primes ending with 1. This is because those with 7 come from integers ending with 4 or 6, while those with 1 come only from integers ending with 0 (see De Koninck & Mercier reference). - Bernard Schott, Nov 29 2020
The set of odd primes p for which every elliptic curve of the form y^2 = x^3 + d*x has order p-1 over GF(p) for those d with (d,p)=1 and d a fourth power modulo p. - Gary Walsh, Sep 01 2021 [edited, Gary Walsh, Apr 26 2025]

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 211 pp. 34 and 169, Ellipses, Paris, 2004.
  • Leonhard Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 22.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • C. Stanley Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Cf. A083844 (number of these primes < 10^n), A199401 (growth constant).
Cf. A000668 (Mersenne primes), A019434 (Fermat primes).
Subsequence of A039770.
Cf. A010051, subsequence of A002522.
Cf. A237040 (an analog for n^3 + 1).
Cf. A010051, A000290; subsequence of A028916.
Subsequence of A039770, A054754, A054755, A063752.
Primes of form n^2+b^4, b fixed: A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).
Cf. A030430 (primes ending with 1), A030432 (primes ending with 7).

Programs

  • Haskell
    a002496 n = a002496_list !! (n-1)
    a002496_list = filter ((== 1) . a010051') a002522_list
    -- Reinhard Zumkeller, May 06 2013
    
  • Magma
    [p: p in PrimesUpTo(100000)| IsSquare(p-1)]; // Vincenzo Librandi, Apr 09 2011
    
  • Maple
    select(isprime, [2, seq(4*i^2+1, i= 1..1000)]); # Robert Israel, Oct 14 2014
  • Mathematica
    Select[Range[100]^2+1, PrimeQ]
    Join[{2},Select[Range[2,300,2]^2+1,PrimeQ]] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    isA002496(n) = isprime(n) && issquare(n-1) \\ Michael B. Porter, Mar 21 2010
    
  • PARI
    is_A002496(n)=issquare(n-1)&&isprime(n) \\ For "random" numbers in the range 10^10 and beyond, at least 5 times faster than the above. - M. F. Hasler, Oct 14 2014
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    from sympy import isprime
    A002496_list = [n+1 for n in accumulate(range(10**5),lambda x,y:x+2*y-1) if isprime(n+1)] # Chai Wah Wu, Sep 23 2014
    
  • Python
    # Python 2.4 or higher required
    from sympy import isprime
    A002496_list = list(filter(isprime, (n*n+1 for n in range(10**5)))) # David Radcliffe, Jun 26 2016

Formula

There are O(sqrt(n)/log(n)) terms of this sequence up to n. But this is just an upper bound. See the Bateman-Horn or Wolf papers, for example, for the conjectured for what is believed to be the correct density.
a(n) = 1 + A005574(n)^2. - R. J. Mathar, Jul 31 2015
Sum_{n>=1} 1/a(n) = A172168. - Amiram Eldar, Nov 14 2020
a(n+1) = 4*A001912(n)^2 + 1. - Hal M. Switkay, Apr 03 2022

Extensions

Formula, reference, and comment from Charles R Greathouse IV, Aug 24 2009
Edited by M. F. Hasler, Oct 14 2014

A002383 Primes of form k^2 + k + 1.

Original entry on oeis.org

3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
Offset: 1

Views

Author

Keywords

Comments

Also primes p such that 4p-3 is square. - Giovanni Teofilatto, Sep 07 2005
Also these primes are sums of 1 and some consecutive even numbers starting at 2; e.g., 31 = 1+2+4+6+8+10. - Labos Elemer, Apr 15 2003
Also primes of form n^2 - n + 1 (Prime central polygonal numbers, A002061). - Zak Seidov, Jan 26 2006
Also primes which are of the form TriangularNumber(n) + TriangularNumber(n+2): 7 = 1+6, 13 = 3+10, 31 = 10+21, 43 = 15+28, 73 = 28+45, ... - Vladimir Joseph Stephan Orlovsky, Apr 03 2009
It is not known whether there are infinitely many primes of the form n^2+n+1. See Rose reference. - Daniel Tisdale, Jun 27 2009
These numbers when >= 7 are prime repunits 111_n in a base n >= 2, so except for 3, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", Sections V.4 - V.5.) A002383 is generated by A002384 which lists the bases n of 111_n. A002383 = A053183 Union A185632. - Bernard Schott, Dec 22 2012
Conjecture: the set of these numbers, except 3, is the intersection of sets A085104 and A059055. See A225148. - Thomas Ordowski, May 02 2013
For a(n)>13, the fractional part of square root of a(n) starts with digit 5 (see A034101). - Charles Kusniec, Sep 06 2022

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
  • H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A237037, A237038, A237039, A237040 (from semiprimes of form n^3 + 1).
See also A034101.

Programs

  • Magma
    [ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
    
  • Maple
    select(isprime, [j^2+j+1$j=1..200])[];  # Alois P. Heinz, Apr 20 2022
  • Mathematica
    Select[Table[n^2+n+1, {n,250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    list(lim)=select(n->isprime(n),vector((sqrt(4*lim-3)-1)\2,k,k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022

Formula

a(n) = A002384(n)^2 + A002384(n) + 1 = (A088503(n-1)^2 + 3)/4 = (A110284(n) + 3)/4. - Ray Chandler, Sep 07 2005

Extensions

Extended by Ray Chandler, Sep 07 2005

A096173 Numbers k such that k^3+1 is an odd semiprime.

Original entry on oeis.org

2, 4, 6, 16, 18, 22, 28, 42, 58, 60, 70, 72, 78, 100, 102, 106, 112, 148, 156, 162, 190, 210, 232, 280, 310, 330, 352, 358, 382, 396, 448, 456, 490, 568, 606, 672, 756, 786, 820, 826, 828, 856, 858, 876, 928, 970, 982, 1008, 1012, 1030, 1068, 1092, 1108, 1150
Offset: 1

Views

Author

Hugo Pfoertner, Jun 20 2004

Keywords

Comments

Numbers n such that n^3 + 1 is a semiprime, because then n^3 + 1 must be odd, since n^3 + 1 = (n+1)*(n^2 - n + 1) is a semiprime only if n+1 is odd. - Jonathan Sondow, Feb 02 2014
Obviously, n + 1 is always a prime number. Sequence is intersection of A006093 and A055494. - Altug Alkan, Dec 20 2015

Examples

			a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
		

Crossrefs

Cf. A001358; A081256: largest prime factor of k^3+1; A096174: (k^3+1)/(k+1) is prime; A046315, A237037, A237038, A237039, A237040.

Programs

  • Magma
    [n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
  • Maple
    select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i,i=1..1000)]); # Robert Israel, Dec 20 2015
  • Mathematica
    Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
  • PARI
    for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
    

Formula

a(n) = 2*A237037(n) = (A237040(n)-1)^(1/3). - Jonathan Sondow, Feb 02 2014

Extensions

Corrected by Zak Seidov, Mar 08 2006

A237037 Numbers k such that (2*k)^3 + 1 is a semiprime.

Original entry on oeis.org

1, 2, 3, 8, 9, 11, 14, 21, 29, 30, 35, 36, 39, 50, 51, 53, 56, 74, 78, 81, 95, 105, 116, 140, 155, 165, 176, 179, 191, 198, 224, 228, 245, 284, 303, 336, 378, 393, 410, 413, 414, 428, 429, 438, 464, 485, 491, 504, 506, 515, 534, 546, 554, 575, 596, 611, 638, 641, 648, 659, 680, 683, 711, 714, 725, 744, 765, 774, 791
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

Numbers k such that 2*k+1 and 4*k^2 - 2*k + 1 are both prime.
Same as k/2 such that k^3 + 1 is a semiprime, because then k must be even.

Examples

			(2*1)^3 + 1 = 9 = 3*3 is a semiprime, so a(1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[800], PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]
    Select[Range[800],PrimeOmega[(2#)^3+1]==2&] (* Harvey P. Dale, Nov 28 2024 *)

Formula

a(n) = A096173(n)/2 = (1/2)*(A237040(n)-1)^(1/3).

A237038 Primes p such that (2*p)^3 + 1 is a semiprime.

Original entry on oeis.org

2, 3, 11, 29, 53, 179, 191, 491, 641, 659, 683, 1103, 1499, 1901, 2129, 2543, 2549, 3803, 3851, 4271, 4733, 4943, 5303, 5441, 6101, 6329, 6449, 7193, 7211, 8093, 8513, 9059, 9419, 10091, 10271, 10733, 10781, 11321, 12203, 12821, 13451, 14561, 15233, 15803, 17159, 17333, 18131, 19373, 19919
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

Same as Sophie Germain primes p such that 4*p^2 - 2*p + 1 is also prime (because (2*p)^3 + 1 = (2*p + 1)(4*p^2 - 2*p + 1)).
Primes in A237037.
For n>1, 8*a(n)^3 is a solution for the equation phi(x+1) - phi(x) = x/2. - Farideh Firoozbakht, Dec 17 2014

Examples

			11 is prime and (2*11)^3 + 1 = 10649 = 23*463 is a semiprime, so 11 is a member.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]
    Select[Prime[Range[2500]],PrimeOmega[(2#)^3+1]==2&] (* Harvey P. Dale, Jun 28 2021 *)

Formula

a(n) = (1/2)*(A237039(n)-1)^(1/3).

A237039 Semiprimes of the form (2*p)^3 + 1, where p is prime.

Original entry on oeis.org

65, 217, 10649, 195113, 1191017, 45882713, 55742969, 946966169, 2106997769, 2289529433, 2548895897, 10735357817, 26946035993, 54958685609, 77199941513, 131561576057, 132495001193, 440016501017, 456888832409, 623273556089, 848202406697, 966188398457
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Examples

			(2*2)^3 + 1 = 65 = 5*13 is a semiprime, so a(1) = 2.
		

Crossrefs

Programs

  • Mathematica
    L = Select[Range[5000], PrimeQ[#] && PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]; (2 L)^3 + 1
    Select[Table[(2p)^3+1,{p,Prime[Range[1000]]}],PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 21 2021 *)

Formula

a(n) = (2*A237038(n))^3 + 1.

A237114 Smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

Original entry on oeis.org

10, 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, 21214052113249267732127817825945098816023915043832462900000000000000000000000000001, 2147483649, 356811923176489970264571492362373784095686657, 1821119122882338858450163704901509732674059569636703920027007853793548503164173361298060584748698304513
Offset: 1

Views

Author

Jonathan Sondow, Feb 04 2014

Keywords

Comments

For n > 1, smallest number k^p+1 with both (k^p+1)/(k+1) and k+1 prime, where p = prime(n); the corresponding primes (k^p+1)/(k+1) for n > 1 are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding primes k+1 are A237115(n) = 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, ... .
a(n) == its smaller prime factor A237115(n) (mod prime(n)). Proof: 10 == 2 (mod 2), so true for n=1. For n>1, true by Fermat's little theorem: k^p+1 == k+1 (mod p).
a(n) is in A006881 (squarefree semiprimes), except for a(2) = 9 = 3^2. Proof: True for n=1. For n>1, if k^p+1 = (k+1)^2, then k^(p-1) = k+2, so k*(k^(p-2)-1) = 2. Now k>1 implies k=2 and p=3, so that n=2.
It appears that a(n) mod p > 0 for all n > 2 (see A237117), where p = prime(n). If true, then the larger prime factor A237116(n) of a(n) is == 1 (mod p), since a(n) == its smaller prime factor (mod p).

Examples

			Prime(1)=2 and the smallest semiprime of the form k^2+1 is a(1) = 3^2+1 = 10 = 2*5.
Prime(2)=3 and the smallest semiprime of the form k^3+1 is a(2) = 2^3+1 = 9 = 3*3.
		

Crossrefs

Programs

  • Mathematica
    L = {10}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q^p + 1], {k, 2, 12}]; L

Formula

a(n) = A237115(n)*A237116(n), for n > 0.
a(n) = (A237115(n)-1)^prime(n)+1, for n > 1.
a(n) == A237115(n) (mod prime(n)), for n > 0.
a(n) mod prime(n) = A237117(n), if a(n) > 0.

A237115 Lesser prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

Original entry on oeis.org

2, 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, 313, 3, 7, 11, 7, 3, 11, 47, 19, 3, 1499, 17, 71, 3, 97, 7, 13, 823, 3, 97, 1163, 31, 17, 199, 1907, 53, 3, 17, 1231, 1013, 3, 13, 53, 3, 67, 47, 23, 1013, 787, 127, 347, 17, 37, 97, 683, 631, 73, 4549, 173, 11, 17, 1039, 3, 17, 47, 6389, 3, 461, 23, 673, 37, 29, 331, 7451, 1433, 4561
Offset: 1

Views

Author

Jonathan Sondow, Feb 04 2014

Keywords

Comments

For n > 1, smallest prime p such that ((p-1)^prime(n)+1)/p is prime; the corresponding primes ((p-1)^prime(n)+1)/p are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding semiprimes (p-1)^prime(n)+1 are A237114(n) = 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, ... .

Examples

			Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 2.
Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    L = {2}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q + 1], {k, 2, 78}]; L

Formula

a(n) = A237114(n)/A237116(n), for n > 0.
(a(n)-1)^prime(n) = A237114(n)-1, for n > 1.
a(n) == A237114(n) (mod prime(n)) (for a proof, see A237114).
a(n) mod prime(n) = A237117(n), if a(n) > 0.

A237116 Larger prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

Original entry on oeis.org

5, 3, 11, 43, 683, 2731, 43691, 174763, 2796203, 30700509570548867919143006984001590182379037690061451374819102749638205499276411, 715827883, 20988936657440586486151264256610222593863921, 5818271958090539483866337715340286685859615238455923067178938830011337070812055467405944360219483401
Offset: 1

Views

Author

Jonathan Sondow, Feb 05 2014

Keywords

Comments

For n > 1, smallest prime of the form ((p-1)^prime(n)+1)/p, where p is prime; the corresponding primes p are A237115(n) = 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, ... and the corresponding semiprimes (p-1)^prime(n)+1 are A237114(n) = 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, ... .
It appears that a(n) == 1 (mod prime(n)), for all n <> 2. See 4th comment in A237114.

Examples

			Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 5.
Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    L = {5}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, cp], {k, 2, 13}]; L

Formula

a(n) = A237114(n)/A237115(n), for n > 0.
a(n) = ((A237115(n)-1)^prime(n)+1)/A237115(n), for n > 1.
Showing 1-10 of 13 results. Next