cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A162471 Prime divisors of {n^2+n+1} which do not occur in A002383.

Original entry on oeis.org

19, 37, 61, 67, 79, 97, 103, 109, 127, 139, 151, 163, 181, 193, 199, 223, 229, 271, 277, 283, 313, 331, 337, 349, 367, 373, 379, 397, 409, 433, 439, 457, 487, 499, 523, 541, 547, 571, 577, 607, 613, 619, 631, 643, 661, 673, 691, 709, 727, 733, 739, 751, 769, 787, 811, 823, 829
Offset: 1

Views

Author

Daniel Tisdale, Jul 04 2009

Keywords

Examples

			The first prime divisor of {n^2+n+1} which is not an element of the sequence A002383 is 19. 7^2+7+1 = 57 = 19*3.
		

Crossrefs

Cf. A002383.

Extensions

More terms from Michel Marcus, Aug 16 2022

A002061 Central polygonal numbers: a(n) = n^2 - n + 1.

Original entry on oeis.org

1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 463, 507, 553, 601, 651, 703, 757, 813, 871, 931, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by the symbol
...2....
....P...
...2.n..
(P with three attachments).
Also the maximal number of 1's that an n X n invertible {0,1} matrix can have. (See Halmos for proof.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 07 2001
Maximal number of interior regions formed by n intersecting circles, for n >= 1. - Amarnath Murthy, Jul 07 2001
The terms are the smallest of n consecutive odd numbers whose sum is n^3: 1, 3 + 5 = 8 = 2^3, 7 + 9 + 11 = 27 = 3^3, etc. - Amarnath Murthy, May 19 2001
(n*a(n+1)+1)/(n^2+1) is the smallest integer of the form (n*k+1)/(n^2+1). - Benoit Cloitre, May 02 2002
For n >= 3, a(n) is also the number of cycles in the wheel graph W(n) of order n. - Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002
Let b(k) be defined as follows: b(1) = 1 and b(k+1) > b(k) is the smallest integer such that Sum_{i=b(k)..b(k+1)} 1/sqrt(i) > 2; then b(n) = a(n) for n > 0. - Benoit Cloitre, Aug 23 2002
Drop the first three terms. Then n*a(n) + 1 = (n+1)^3. E.g., 7*1 + 1 = 8 = 2^3, 13*2 + 1 = 27 = 3^3, 21*3 + 1 = 64 = 4^3, etc. - Amarnath Murthy, Oct 20 2002
Arithmetic mean of next 2n - 1 numbers. - Amarnath Murthy, Feb 16 2004
The n-th term of an arithmetic progression with first term 1 and common difference n: a(1) = 1 -> 1, 2, 3, 4, 5, ...; a(2) = 3 -> 1, 3, ...; a(3) = 7 -> 1, 4, 7, ...; a(4) = 13 -> 1, 5, 9, 13, ... - Amarnath Murthy, Mar 25 2004
Number of walks of length 3 between any two distinct vertices of the complete graph K_{n+1} (n >= 1). Example: a(2) = 3 because in the complete graph ABC we have the following walks of length 3 between A and B: ABAB, ACAB and ABCB. - Emeric Deutsch, Apr 01 2004
Narayana transform of [1, 2, 0, 0, 0, ...] = [1, 3, 7, 13, 21, ...]. Let M = the infinite lower triangular matrix of A001263 and let V = the Vector [1, 2, 0, 0, 0, ...]. Then A002061 starting (1, 3, 7, ...) = M * V. - Gary W. Adamson, Apr 25 2006
The sequence 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, ... is the trajectory of 3 under repeated application of the map n -> n + 2 * square excess of n, cf. A094765.
Also n^3 mod (n^2+1). - Zak Seidov, Aug 31 2006
Also, omitting the first 1, the main diagonal of A081344. - Zak Seidov, Oct 05 2006
Ignoring the first ones, these are rectangular parallelepipeds with integer dimensions that have integer interior diagonals. Using Pythagoras: sqrt(a^2 + b^2 + c^2) = d, an integer; then this sequence: sqrt(n^2 + (n+1)^2 + (n(n+1))^2) = 2T_n + 1 is the first and most simple example. Problem: Are there any integer diagonals which do not satisfy the following general formula? sqrt((k*n)^2 + (k*(n+(2*m+1)))^2 + (k*(n*(n+(2*m+1)) + 4*T_m))^2) = k*d where m >= 0, k >= 1, and T is a triangular number. - Marco Matosic, Nov 10 2006
Numbers n such that a(n) is prime are listed in A055494. Prime a(n) are listed in A002383. All terms are odd. Prime factors of a(n) are listed in A007645. 3 divides a(3*k-1), 7 divides a(7*k-4) and a(7*k-2), 7^2 divides a(7^2*k-18) and a(7^2*k+19), 7^3 divides a(7^3*k-18) and a(7^3*k+19), 7^4 divides a(7^4*k+1048) and a(7^4*k-1047), 7^5 divides a(7^5*k+1354) and a(7^5*k-1353), 13 divides a(13*k-9) and a(13*k-3), 13^2 divides a(13^2*k+23) and a(13^2*k-22), 13^3 divides a(13^3*k+1037) and a(13^3*k-1036). - Alexander Adamchuk, Jan 25 2007
Complement of A135668. - Kieren MacMillan, Dec 16 2007
From William A. Tedeschi, Feb 29 2008: (Start)
Numbers (sorted) on the main diagonal of a 2n X 2n spiral. For example, when n=2:
.
7---8---9--10
| |
6 1---2 11
| | |
5---4---3 12
|
16--15--14--13
.
Cf. A137928. (End)
a(n) = AlexanderPolynomial[n] defined as Det[Transpose[S]-n S] where S is Seifert matrix {{-1, 1}, {0, -1}}. - Artur Jasinski, Mar 31 2008
Starting (1, 3, 7, 13, 21, ...) = binomial transform of [1, 2, 2, 0, 0, 0]; example: a(4) = 13 = (1, 3, 3, 1) dot (1, 2, 2, 0) = (1 + 6 + 6 + 0). - Gary W. Adamson, May 10 2008
Starting (1, 3, 7, 13, ...) = triangle A158821 * [1, 2, 3, ...]. - Gary W. Adamson, Mar 28 2009
Starting with offset 1 = triangle A128229 * [1,2,3,...]. - Gary W. Adamson, Mar 26 2009
a(n) = k such that floor((1/2)*(1 + sqrt(4*k-3))) + k = (n^2+1), that is A000037(a(n)) = A002522(n) = n^2 + 1, for n >= 1. - Jaroslav Krizek, Jun 21 2009
For n > 0: a(n) = A170950(A002522(n-1)), A170950(a(n)) = A174114(n), A170949(a(n)) = A002522(n-1). - Reinhard Zumkeller, Mar 08 2010
From Emeric Deutsch, Sep 23 2010: (Start)
a(n) is also the Wiener index of the fan graph F(n). The fan graph F(n) is defined as the graph obtained by joining each node of an n-node path graph with an additional node. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of the graph F(n) is (1/2)t[(n-1)(n-2)t + 2(2n-1)]. Example: a(2)=3 because the corresponding fan graph is a cycle on 3 nodes (a triangle), having distances 1, 1, and 1.
(End)
For all elements k = n^2 - n + 1 of the sequence, sqrt(4*(k-1)+1) is an integer because 4*(k-1) + 1 = (2*n-1)^2 is a perfect square. Building the intersection of this sequence with A000225, k may in addition be of the form k = 2^x - 1, which happens only for k = 1, 3, 7, 31, and 8191. [Proof: Still 4*(k-1)+1 = 2^(x+2) - 7 must be a perfect square, which has the finite number of solutions provided by A060728: x = 1, 2, 3, 5, or 13.] In other words, the sequence A038198 defines all elements of the form 2^x - 1 in this sequence. For example k = 31 = 6*6 - 6 + 1; sqrt((31-1)*4+1) = sqrt(121) = 11 = A038198(4). - Alzhekeyev Ascar M, Jun 01 2011
a(n) such that A002522(n-1) * A002522(n) = A002522(a(n)) where A002522(n) = n^2 + 1. - Michel Lagneau, Feb 10 2012
Left edge of the triangle in A214661: a(n) = A214661(n, 1), for n > 0. - Reinhard Zumkeller, Jul 25 2012
a(n) = A215630(n, 1), for n > 0; a(n) = A215631(n-1, 1), for n > 1. - Reinhard Zumkeller, Nov 11 2012
Sum_{n > 0} arccot(a(n)) = Pi/2. - Franz Vrabec, Dec 02 2012
If you draw a triangle with one side of unit length and one side of length n, with an angle of Pi/3 radians between them, then the length of the third side of the triangle will be the square root of a(n). - Elliott Line, Jan 24 2013
a(n+1) is the number j such that j^2 = j + m + sqrt(j*m), with corresponding number m given by A100019(n). Also: sqrt(j*m) = A027444(n) = n * a(n+1). - Richard R. Forberg, Sep 03 2013
Let p(x) the interpolating polynomial of degree n-1 passing through the n points (n,n) and (1,1), (2,1), ..., (n-1,1). Then p(n+1) = a(n). - Giovanni Resta, Feb 09 2014
The number of square roots >= sqrt(n) and < n+1 (n >= 0) gives essentially the same sequence, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, ... . - Michael G. Kaarhus, May 21 2014
For n > 1: a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+1] X [n+1] chessboard. Specifically, this will be a lone queen of one color placed in any position on the perimeter of the board, facing an opponent's "army" of size a(n)-1 == A002378(n-1). - Bob Selcoe, Feb 07 2015
a(n+1) is, for n >= 1, the number of points as well as the number of lines of a finite projective plane of order n (cf. Hughes and Piper, 1973, Theorem 3.5., pp. 79-80). For n = 3, a(4) = 13, see the 'Finite example' in the Wikipedia link, section 2.3, for the point-line matrix. - Wolfdieter Lang, Nov 20 2015
Denominators of the solution to the generalization of the Feynman triangle problem. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The numerators of the ratio of the areas is given by A000290 with an offset of 2. [Cook & Wood, 2004.] - Joe Marasco, Feb 20 2017
n^2 equal triangular tiles with side lengths 1 X 1 X 1 may be put together to form an n X n X n triangle. For n>=2 a(n-1) is the number of different 2 X 2 X 2 triangles being contained. - Heinrich Ludwig, Mar 13 2017
For n >= 0, the continued fraction [n, n+1, n+2] = (n^3 + 3n^2 + 4n + 2)/(n^2 + 3n + 3) = A034262(n+1)/a(n+2) = n + (n+2)/a(n+2); e.g., [2, 3, 4] = A034262(3)/a(4) = 30/13 = 2 + 4/13. - Rick L. Shepherd, Apr 06 2017
Starting with b(1) = 1 and not allowing the digit 0, let b(n) = smallest nonnegative integer not yet in the sequence such that the last digit of b(n-1) plus the first digit of b(n) is equal to k for k = 1, ..., 9. This defines 9 finite sequences, each of length equal to a(k), k = 1, ..., 9. (See A289283-A289287 for the cases k = 5..9.) For k = 10, the sequence is infinite (A289288). For example, for k = 4, b(n) = 1,3,11,31,32,2,21,33,12,22,23,13,14. These terms can be ordered in the following array of size k*(k-1)+1:
1 2 3
21 22 23
31 32 33
11 12 13 14
.
The sequence ends with the term 1k, which lies outside the rectangular array and gives the term +1 (see link).- Enrique Navarrete, Jul 02 2017
The central polygonal numbers are the delimiters (in parenthesis below) when you write the natural numbers in groups of odd size 2*n+1 starting with the group {2} of size 1: (1) 2 (3) 4,5,6 (7) 8,9,10,11,12 (13) 14,15,16,17,18,19,20 (21) 22,23,24,25,26,27,28,29,30 (31) 32,33,34,35,36,37,38,39,40,41,42 (43) ... - Enrique Navarrete, Jul 11 2017
Also the number of (non-null) connected induced subgraphs in the n-cycle graph. - Eric W. Weisstein, Aug 09 2017
Since (n+1)^2 - (n+1) + 1 = n^2 + n + 1 then from 7 onwards these are also exactly the numbers that are represented as 111 in all number bases: 111(2)=7, 111(3)=13, ... - Ron Knott, Nov 14 2017
Number of binary 2 X (n-1) matrices such that each row and column has at most one 1. - Dmitry Kamenetsky, Jan 20 2018
Observed to be the squares visited by bishop moves on a spirally numbered board and moving to the lowest available unvisited square at each step, beginning at the second term (cf. A316667). It should be noted that the bishop will only travel to squares along the first diagonal of the spiral. - Benjamin Knight, Jan 30 2019
From Ed Pegg Jr, May 16 2019: (Start)
Bound for n-subset coverings. Values in A138077 covered by difference sets.
C(7,3,2), {1,2,4}
C(13,4,2), {0,1,3,9}
C(21,5,2), {3,6,7,12,14}
C(31,6,2), {1,5,11,24,25,27}
C(43,7,2), existence unresolved
C(57,8,2), {0,1,6,15,22,26,45,55}
Next unresolved cases are C(111,11,2) and C(157,13,2). (End)
"In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57." (cited from Lubachevsky, Graham link, Introduction). - Rainer Rosenthal, May 27 2020
From Bernard Schott, Dec 31 2020: (Start)
For n >= 1, a(n) is the number of solutions x in the interval 1 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(3) = 7 solutions in the interval [1, 3] are 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This sequence is the answer to the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see link B.M.O 1984. and Gardiner reference). (End)
Called "Hogben numbers" after the British zoologist, statistician and writer Lancelot Thomas Hogben (1895-1975). - Amiram Eldar, Jun 24 2021
Minimum Wiener index of 2-degenerate graphs with n+1 vertices (n>0). A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices. The extremal graphs are maximal 2-degenerate graphs with diameter at most 2. - Allan Bickle, Oct 14 2022
a(n) is the number of parking functions of size n avoiding the patterns 123, 213, and 312. - Lara Pudwell, Apr 10 2023
Repeated iteration of a(k) starting with k=2 produces Sylvester's sequence, i.e., A000058(n) = a^n(2), where a^n is the n-th iterate of a(k). - Curtis Bechtel, Apr 04 2024
a(n) is the maximum number of triangles that can be traversed by starting from a triangle and moving to adjacent triangles via an edge, without revisiting any triangle, in an n X n X n equilateral triangular grid made up of n^2 unit equilateral triangles. - Kiran Ananthpur Bacche, Jan 16 2025

Examples

			G.f. = 1 + x + 3*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 31*x^6 + 43*x^7 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 2007, page 160.
  • Anthony Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 64 and 173 (1984).
  • Paul R. Halmos, Linear Algebra Problem Book, MAA, 1995, pp. 75-6, 242-4.
  • Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 87.
  • Daniel R. Hughes and Frederick Charles Piper, Projective Planes, Springer, 1973.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A010000 (minimum Weiner index of 3-degenerate graphs).

Programs

  • GAP
    List([0..50], n->n^2-n+1); # Muniru A Asiru, May 27 2018
  • Haskell
    a002061 n = n * (n - 1) + 1  -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [ n^2 - n + 1 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 12 2014
    
  • Maple
    A002061 := proc(n)
        numtheory[cyclotomic](6,n) ;
    end proc:
    seq(A002061(n), n=0..20); # R. J. Mathar, Feb 07 2014
  • Mathematica
    FoldList[#1 + #2 &, 1, 2 Range[0, 50]] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{3, -3, 1}, {1, 1, 3}, 60] (* Harvey P. Dale, May 25 2011 *)
    Table[n^2 - n + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 12 2014 *)
    CoefficientList[Series[(1 - 2x + 3x^2)/(1 - x)^3, {x, 0, 52}], x] (* Robert G. Wilson v, Feb 18 2018 *)
    Cyclotomic[6, Range[0, 100]] (* Paolo Xausa, Feb 09 2024 *)
  • Maxima
    makelist(n^2 - n + 1,n,0,55); /* Martin Ettl, Oct 16 2012 */
    
  • PARI
    a(n) = n^2 - n + 1
    

Formula

G.f.: (1 - 2*x + 3*x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = -(n-5)*a(n-1) + (n-2)*a(n-2).
a(n) = Phi_6(n) = Phi_3(n-1), where Phi_k is the k-th cyclotomic polynomial.
a(1-n) = a(n). - Michael Somos, Sep 04 2006
a(n) = a(n-1) + 2*(n-1) = 2*a(n-1) - a(n-2) + 2 = 1+A002378(n-1) = 2*A000124(n-1) - 1. - Henry Bottomley, Oct 02 2000 [Corrected by N. J. A. Sloane, Jul 18 2010]
a(n) = A000217(n) + A000217(n-2) (sum of two triangular numbers).
From Paul Barry, Mar 13 2003: (Start)
x*(1+x^2)/(1-x)^3 is g.f. for 0, 1, 3, 7, 13, ...
a(n) = 2*C(n, 2) + C(n-1, 0).
E.g.f.: (1+x^2)*exp(x). (End)
a(n) = ceiling((n-1/2)^2). - Benoit Cloitre, Apr 16 2003. [Hence the terms are about midway between successive squares and so (except for 1) are not squares. - N. J. A. Sloane, Nov 01 2005]
a(n) = 1 + Sum_{j=0..n-1} (2*j). - Xavier Acloque, Oct 08 2003
a(n) = floor(t(n^2)/t(n)), where t(n) = A000217(n). - Jon Perry, Feb 14 2004
a(n) = leftmost term in M^(n-1) * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 0 1 2 / 0 0 1]. E.g., a(6) = 31 since M^5 * [1 1 1] = [31 11 1]. - Gary W. Adamson, Nov 11 2004
a(n+1) = n^2 + n + 1. a(n+1)*a(n) = (n^6-1)/(n^2-1) = n^4 + n^2 + 1 = a(n^2+1) (a product of two consecutive numbers from this sequence belongs to this sequence). (a(n+1) + a(n))/2 = n^2 + 1. (a(n+1) - a(n))/2 = n. a((a(n+1) + a(n))/2) = a(n+1)*a(n). - Alexander Adamchuk, Apr 13 2006
a(n+1) is the numerator of ((n + 1)! + (n - 1)!)/ n!. - Artur Jasinski, Jan 09 2007
a(n) = A132111(n-1, 1), for n > 1. - Reinhard Zumkeller, Aug 10 2007
a(n) = Det[Transpose[{{-1, 1}, {0, -1}}] - n {{-1, 1}, {0, -1}}]. - Artur Jasinski, Mar 31 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A176271(n,1) for n > 0. - Reinhard Zumkeller, Apr 13 2010
a(n) == 3 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = (n-1)^2 + (n-1) + 1 = 111 read in base n-1 (for n > 2). - Jason Kimberley, Oct 18 2011
a(n) = A228643(n, 1), for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = sqrt(A058031(n)). - Richard R. Forberg, Sep 03 2013
G.f.: 1 / (1 - x / (1 - 2*x / (1 + x / (1 - 2*x / (1 + x))))). - Michael Somos, Apr 03 2014
a(n) = A243201(n - 1) / A003215(n - 1), n > 0. - Mathew Englander, Jun 03 2014
For n >= 2, a(n) = ceiling(4/(Sum_{k = A000217(n-1)..A000217(n) - 1}, 1/k)). - Richard R. Forberg, Aug 17 2014
A256188(a(n)) = 1. - Reinhard Zumkeller, Mar 26 2015
Sum_{n>=0} 1/a(n) = 1 + Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) = 2.79814728056269018... . - Vaclav Kotesovec, Apr 10 2016
a(n) = A101321(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A000217(n-1) + A000124(n-1), n > 0. - Torlach Rush, Aug 06 2018
Sum_{n>=1} arctan(1/a(n)) = Pi/2. - Amiram Eldar, Nov 01 2020
Sum_{n=1..M} arctan(1/a(n)) = arctan(M). - Lee A. Newberg, May 08 2024
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)*sech(sqrt(3)*Pi/2).
Product_{n>=2} (1 - 1/a(n)) = Pi*sech(sqrt(3)*Pi/2). (End)
For n > 1, sqrt(a(n)+sqrt(a(n)-sqrt(a(n)+sqrt(a(n)- ...)))) = n. - Diego Rattaggi, Apr 17 2021
a(n) = (1 + (n-1)^4 + n^4) / (1 + (n-1)^2 + n^2) [see link B.M.O. 2007 and Steve Dinh reference]. - Bernard Schott, Dec 27 2021

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
Partially edited by Bruno Berselli, Dec 19 2013

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A007645 Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613
Offset: 1

Views

Author

Keywords

Comments

Also, odd primes p such that -3 is a square mod p. - N. J. A. Sloane, Dec 25 2017
Equivalently, primes of the form p = (x^3 - y^3)/(x - y). If x=y+1 we get the cuban primes A002407, which is therefore a subsequence.
These are not to be confused with the Eisenstein primes, which are the primes in the ring of integers Z[w], where w = (-1+sqrt(-3))/2. The present sequence gives the rational primes which are also Eisenstein primes. - N. J. A. Sloane, Feb 06 2008
Also primes of the form x^2+3y^2 and, except for 3, x^2+xy+7y^2. See A140633. - T. D. Noe, May 19 2008
Conjecture: this sequence is Union(A002383,A162471). - Daniel Tisdale, Jul 04 2009
Primes p such that antiharmonic mean B(p) of the numbers k < p such that gcd(k, p) = 1 is not integer, where B(p) = A053818(p) / A023896(p) = A175505(p) / A175506(p) = (2p - 1) / 3. Primes p such that A175506(p) > 1. Subsequence of A179872. Union a(n) + A179891 = A179872. Example: a(6) = 37 because B(37) = A053818(37) / A023896(37) = A175505(37) / A175506(37) = 16206 / 666 = 73 / 3 (not integer). Cf. A179871, A179872, A179873, A179874, A179875, A179876, A179877, A179878, A179879, A179880, A179882, A179883, A179884, A179885, A179886, A179887, A179890, A179891, A003627, A034934. - Jaroslav Krizek, Aug 01 2010
Subsequence of Loeschian numbers, cf. A003136 and A024614; A088534(a(n)) > 0. - Reinhard Zumkeller, Oct 30 2011
Primes such that there exist a unique x, y, with 1 < x <= y < p, x + y == 1 (mod p) and x * y == 1 (mod p). - Jon Perry, Feb 02 2014
The prime factors of A002061. - Richard R. Forberg, Dec 10 2014
This sequence gives the primes p which solve s^2 == -3 (mod 4*p) (see Buell, Proposition 4.1., p. 50, for Delta = -3). p = 2 is not a solution. x^2 == -3 (mod 4) has solutions for all odd x. x^2 == -3 (mod p) has for odd primes p, not 3, the solutions of Legendre(-3|p) = +1 which are p == {1, 7} (mod 12). For p = 3 the representative solution is x = 0. Hence the solution of s^2 == -3 (mod 4*p) are the odd primes p = 3 and p == {1, 7} (mod 12) (or the primes p = 0, 1 (mod 3)). - Wolfdieter Lang, May 22 2021

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, p. 50.
  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Subsequence of A003136.
Subsequences include A002407, A002648, and A201477.
Apart from initial term, same as A045331.
Cf. A001479, A001480 (x and y such that a(n) = x^2 + 3y^2).
Primes in A003136 and A034017.

Programs

  • Haskell
    a007645 n = a007645_list !! (n-1)
    a007645_list = filter ((== 1) . a010051) $ tail a003136_list
    -- Reinhard Zumkeller, Jul 11 2013, Oct 30 2011
  • Maple
    select(isprime,[3, seq(6*k+1, k=1..1000)]); # Robert Israel, Dec 12 2014
  • Mathematica
    Join[{3},Select[Prime[Range[150]],Mod[#,3]==1&]] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    forprime(p=2,1e3,if(p%3<2,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

p == 0 or 1 (mod 3).
{3} UNION A002476. - R. J. Mathar, Oct 28 2008

Extensions

Entry revised by N. J. A. Sloane, Jan 29 2013

A002384 Numbers m such that m^2 + m + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119, 131, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 167, 168, 173, 176, 188, 189, 192, 194, 203, 206, 209, 215
Offset: 1

Views

Author

Keywords

Comments

A002383 lists the corresponding primes. - Bernard Schott, Dec 22 2012
This is also the list of bases where 111 represents a prime number. - Christian N. K. Anderson, Mar 28 2013
If d>1 divides m^2 + m + 1, then m + k*d is not in the sequence, for all k>=1. - Gionata Neri, Mar 04 2017

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = (A088503(n) - 1)/2. - Ray Chandler

Extensions

Extended by Ray Chandler, Sep 07 2005

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A055494 Numbers k such that k^2 - k + 1 is prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 13, 15, 16, 18, 21, 22, 25, 28, 34, 39, 42, 51, 55, 58, 60, 63, 67, 70, 72, 76, 78, 79, 81, 90, 91, 100, 102, 106, 111, 112, 118, 120, 132, 139, 142, 144, 148, 151, 154, 156, 162, 163, 165, 168, 169, 174, 177, 189, 190, 193, 195, 204, 207, 210, 216
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Comments

Also nonnegative integers such that a(n) + w is an Eisenstein prime, where w is the primitive cube root of unity. - Frank M Jackson, Jul 15 2025

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • D. E. Knuth, "The Art of Computer Programming," Addison-Wesley, Reading, MA, Volume II, page 378.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Equals A002384(n)+1.
A002383 gives the primes.

Programs

  • Magma
    [n: n in [1..300] |IsPrime(n^2 - n + 1)]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[300], PrimeQ[#^2 - # + 1] &] (* Vincenzo Librandi, Sep 28 2012 *)
    lst = {}; Do[If[ResourceFunction["EisensteinIntegers"][n + w, w, "PrimeQ"],AppendTo[lst, n]], {n, 1, 300}]; lst (* Frank M Jackson, Jul 15 2025 *)
  • PARI
    is(n)=isprime(n^2-n+1) \\ Charles R Greathouse IV, Feb 16 2017

Extensions

More terms from David Wasserman, Sep 15 2005

A050267 Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1

Views

Author

Keywords

Comments

Terms are listed in the order of their appearance in sequence b.
This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, May 10 2007
Further edited by Klaus Brockhaus, Mar 20 2010
More terms (to distinguish from quadratic) from Charles R Greathouse IV, Jun 18 2017

A081256 Greatest prime factor of n^3 + 1.

Original entry on oeis.org

2, 3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 7, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 19, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

Record values appear to match the terms of A002383 for n>1. - Bill McEachen, Oct 18 2023

Crossrefs

Programs

  • Maple
    A081256 := proc(n)
        A006530(n^3+1) ;
    end proc:
    seq(A081256(n),n=1..20) ; # R. J. Mathar, Feb 13 2014
  • Mathematica
    Table[Max[Transpose[FactorInteger[n^3 + 1]][[1]]], {n, 25}]
  • PARI
    a(n)=my(f=factor(n^3+1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A081256(n)=vecmax(factor(n^3+1)[,1]) \\ It seems slightly slower to get the last element using ...[-1..-1][1]. - M. F. Hasler, Jun 15 2018

Formula

a(n) = A006530(A001093(n)). - M. F. Hasler, Jun 13 2018
a(n) >= 31 for n >= 70 (Buchmann et al., 1991). - Amiram Eldar, Oct 25 2024

Extensions

More terms from Harvey P. Dale, Mar 22 2003
More terms from Hugo Pfoertner, Jun 20 2004

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.
Showing 1-10 of 54 results. Next