cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 65 results. Next

A189891 Complement of A085104.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2011

Keywords

A000225 a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Keywords

Comments

This is the Gaussian binomial coefficient [n,1] for q=2.
Number of rank-1 matroids over S_n.
Numbers k such that the k-th central binomial coefficient is odd: A001405(k) mod 2 = 1. - Labos Elemer, Mar 12 2003
This gives the (zero-based) positions of odd terms in the following convolution sequences: A000108, A007460, A007461, A007463, A007464, A061922.
Also solutions (with minimum number of moves) for the problem of Benares Temple, i.e., three diamond needles with n discs ordered by decreasing size on the first needle to place in the same order on the third one, without ever moving more than one disc at a time and without ever placing one disc at the top of a smaller one. - Xavier Acloque, Oct 18 2003
a(0) = 0, a(1) = 1; a(n) = smallest number such that a(n)-a(m) == 0 (mod (n-m+1)), for all m. - Amarnath Murthy, Oct 23 2003
Binomial transform of [1, 1/2, 1/3, ...] = [1/1, 3/2, 7/3, ...]; (2^n - 1)/n, n=1,2,3, ... - Gary W. Adamson, Apr 28 2005
Numbers whose binary representation is 111...1. E.g., the 7th term is (2^7) - 1 = 127 = 1111111 (in base 2). - Alexandre Wajnberg, Jun 08 2005
Number of nonempty subsets of a set with n elements. - Michael Somos, Sep 03 2006
For n >= 2, a(n) is the least Fibonacci n-step number that is not a power of 2. - Rick L. Shepherd, Nov 19 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are disjoint and for which either x is a subset of y or y is a subset of x. - Ross La Haye, Jan 10 2008
A simpler way to state this is that it is the number of pairs (x,y) where at least one of x and y is the empty set. - Franklin T. Adams-Watters, Oct 28 2011
2^n-1 is the sum of the elements in a Pascal triangle of depth n. - Brian Lewis (bsl04(AT)uark.edu), Feb 26 2008
Sequence generalized: a(n) = (A^n -1)/(A-1), n >= 1, A integer >= 2. This sequence has A=2; A003462 has A=3; A002450 has A=4; A003463 has A=5; A003464 has A=6; A023000 has A=7; A023001 has A=8; A002452 has A=9; A002275 has A=10; A016123 has A=11; A016125 has A=12; A091030 has A=13; A135519 has A=14; A135518 has A=15; A131865 has A=16; A091045 has A=17; A064108 has A=20. - Ctibor O. Zizka, Mar 03 2008
a(n) is also a Mersenne prime A000668 when n is a prime number in A000043. - Omar E. Pol, Aug 31 2008
a(n) is also a Mersenne number A001348 when n is prime. - Omar E. Pol, Sep 05 2008
With offset 1, = row sums of triangle A144081; and INVERT transform of A009545 starting with offset 1; where A009545 = expansion of sin(x)*exp(x). - Gary W. Adamson, Sep 10 2008
Numbers n such that A000120(n)/A070939(n) = 1. - Ctibor O. Zizka, Oct 15 2008
For n > 0, sequence is equal to partial sums of A000079; a(n) = A000203(A000079(n-1)). - Lekraj Beedassy, May 02 2009
Starting with offset 1 = the Jacobsthal sequence, A001045, (1, 1, 3, 5, 11, 21, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Numbers n such that n=2*phi(n+1)-1. - Farideh Firoozbakht, Jul 23 2009
a(n) = (a(n-1)+1)-th odd numbers = A005408(a(n-1)) for n >= 1. - Jaroslav Krizek, Sep 11 2009
Partial sums of a(n) for n >= 0 are A000295(n+1). Partial sums of a(n) for n >= 1 are A000295(n+1) and A130103(n+1). a(n) = A006127(n) - (n+1). - Jaroslav Krizek, Oct 16 2009
If n is even a(n) mod 3 = 0. This follows from the congruences 2^(2k) - 1 ~ 2*2*...*2 - 1 ~ 4*4*...*4 - 1 ~ 1*1*...*1 - 1 ~ 0 (mod 3). (Note that 2*2*...*2 has an even number of terms.) - Washington Bomfim, Oct 31 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 26 2010
This is the sequence A(0,1;1,2;2) = A(0,1;3,-2;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) = S(n+1,2), a Stirling number of the second kind. See the example below. - Dennis P. Walsh, Mar 29 2011
Entries of row a(n) in Pascal's triangle are all odd, while entries of row a(n)-1 have alternating parities of the form odd, even, odd, even, ..., odd.
Define the bar operation as an operation on signed permutations that flips the sign of each entry. Then a(n+1) is the number of signed permutations of length 2n that are equal to the bar of their reverse-complements and avoid the set of patterns {(-2,-1), (-1,+2), (+2,+1)}. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011
A159780(a(n)) = n and A159780(m) < n for m < a(n). - Reinhard Zumkeller, Oct 21 2011
This sequence is also the number of proper subsets of a set with n elements. - Mohammad K. Azarian, Oct 27 2011
a(n) is the number k such that the number of iterations of the map k -> (3k +1)/2 == 1 (mod 2) until reaching (3k +1)/2 == 0 (mod 2) equals n. (see the Collatz problem). - Michel Lagneau, Jan 18 2012
For integers a, b, denote by a<+>b the least c >= a such that Hd(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>1. Thus this sequence is the Hamming analog of nonnegative integers. - Vladimir Shevelev, Feb 13 2012
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... apparently A007733. - R. J. Mathar, Aug 10 2012
Start with n. Each n generates a sublist {n-1,n-2,...,1}. Each element of each sublist also generates a sublist. Take the sum of all. E.g., 3->{2,1} and 2->{1}, so a(3)=3+2+1+1=7. - Jon Perry, Sep 02 2012
This is the Lucas U(P=3,Q=2) sequence. - R. J. Mathar, Oct 24 2012
The Mersenne numbers >= 7 are all Brazilian numbers, as repunits in base two. See Proposition 1 & 5.2 in Links: "Les nombres brésiliens". - Bernard Schott, Dec 26 2012
Number of line segments after n-th stage in the H tree. - Omar E. Pol, Feb 16 2013
Row sums of triangle in A162741. - Reinhard Zumkeller, Jul 16 2013
a(n) is the highest power of 2 such that 2^a(n) divides (2^n)!. - Ivan N. Ianakiev, Aug 17 2013
In computer programming, these are the only unsigned numbers such that k&(k+1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Minimal number of moves needed to interchange n frogs in the frogs problem (see for example the NRICH 1246 link or the Britton link below). - N. J. A. Sloane, Jan 04 2014
a(n) !== 4 (mod 5); a(n) !== 10 (mod 11); a(n) !== 2, 4, 5, 6 (mod 7). - Carmine Suriano, Apr 06 2014
After 0, antidiagonal sums of the array formed by partial sums of integers (1, 2, 3, 4, ...). - Luciano Ancora, Apr 24 2015
a(n+1) equals the number of ternary words of length n avoiding 01,02. - Milan Janjic, Dec 16 2015
With offset 0 and another initial 0, the n-th term of 0, 0, 1, 3, 7, 15, ... is the number of commas required in the fully-expanded von Neumann definition of the ordinal number n. For example, 4 := {0, 1, 2, 3} := {{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}}, which uses seven commas. Also, for n>0, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where a single symbol (as usual) is always used to represent the empty set and spaces are ignored. E.g., a(5) = 31, the total such symbols for the ordinal 4. - Rick L. Shepherd, May 07 2016
With the quantum integers defined by [n+1]A001045%20are%20given%20by%20q%20=%20i%20*%20sqrt(2)%20for%20i%5E2%20=%20-1.%20Cf.%20A239473.%20-%20_Tom%20Copeland">q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)), the Mersenne numbers are a(n+1) = q^n [n+1]_q with q = sqrt(2), whereas the signed Jacobsthal numbers A001045 are given by q = i * sqrt(2) for i^2 = -1. Cf. A239473. - _Tom Copeland, Sep 05 2016
For n>1: numbers n such that n - 1 divides sigma(n + 1). - Juri-Stepan Gerasimov, Oct 08 2016
This is also the second column of the Stirling2 triangle A008277 (see also A048993). - Wolfdieter Lang, Feb 21 2017
Except for the initial terms, the decimal representation of the x-axis of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", "Rule 721" and "Rule 734", based on the 5-celled von Neumann neighborhood initialized with a single on cell. - Robert Price, Mar 14 2017
a(n), n > 1, is the number of maximal subsemigroups of the monoid of order-preserving partial injective mappings on a set with n elements. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Also the number of independent vertex sets and vertex covers in the complete bipartite graph K_{n-1,n-1}. - Eric W. Weisstein, Sep 21 2017
Sum_{k=0..n} p^k is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*p + binomial(i+j-1, i), in this case p=2 (empirical observation). - Tony Foster III, May 11 2019
The rational numbers r(n) = a(n+1)/2^(n+1) = a(n+1)/A000079(n+1) appear also as root of the n-th iteration f^{[n]}(c; x) = 2^(n+1)*x - a(n+1)*c of f(c; x) = f^{[0]}(c; x) = 2*x - c as r(n)*c. This entry is motivated by a riddle of Johann Peter Hebel (1760 - 1826): Erstes Rechnungsexempel(Ein merkwürdiges Rechnungs-Exempel) from 1803, with c = 24 and n = 2, leading to the root r(2)*24 = 21 as solution. See the link and reference. For the second problem, also involving the present sequence, see a comment in A130330. - Wolfdieter Lang, Oct 28 2019
a(n) is the sum of the smallest elements of all subsets of {1,2,..,n} that contain n. For example, a(3)=7; the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 7. - Enrique Navarrete, Aug 21 2020
a(n-1) is the number of nonempty subsets of {1,2,..,n} which don't have an element that is the size of the set. For example, for n = 4, a(3) = 7 and the subsets are {2}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,2,4}. - Enrique Navarrete, Nov 21 2020
From Eric W. Weisstein, Sep 04 2021: (Start)
Also the number of dominating sets in the complete graph K_n.
Also the number of minimum dominating sets in the n-helm graph for n >= 3. (End)
Conjecture: except for a(2)=3, numbers m such that 2^(m+1) - 2^j - 2^k - 1 is composite for all 0 <= j < k <= m. - Chai Wah Wu, Sep 08 2021
a(n) is the number of three-in-a-rows passing through a corner cell in n-dimensional tic-tac-toe. - Ben Orlin, Mar 15 2022
From Vladimir Pletser, Jan 27 2023: (Start)
a(n) == 1 (mod 30) for n == 1 (mod 4);
a(n) == 7 (mod 120) for n == 3 (mod 4);
(a(n) - 1)/30 = (a(n+2) - 7)/120 for n odd;
(a(n) - 1)/30 = (a(n+2) - 7)/120 = A131865(m) for n == 1 (mod 4) and m >= 0 with A131865(0) = 0. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 8. - Stefano Spezia, Nov 15 2023
Also, number of nodes in a perfect binary tree of height n-1, or: number of squares (or triangles) after the n-th step of the construction of a Pythagorean tree: Start with a segment. At each step, construct squares having the most recent segment(s) as base, and isosceles right triangles having the opposite side of the squares as hypotenuse ("on top" of each square). The legs of these triangles will serve as the segments which are the bases of the squares in the next step. - M. F. Hasler, Mar 11 2024
a(n) is the length of the longest path in the n-dimensional hypercube. - Christian Barrientos, Apr 13 2024
a(n) is the diameter of the n-Hanoi graph. Equivalently, a(n) is the largest minimum number of moves between any two states of the Towers of Hanoi problem (aka problem of Benares Temple described above). - Allan Bickle, Aug 09 2024

Examples

			For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely,
  {a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - _Dennis P. Walsh_, Mar 29 2011
From _Justin M. Troyka_, Aug 13 2011: (Start)
Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are:
  (+1,+2,-3,-4),
  (+1,+3,-2,-4),
  (+1,-3,+2,-4),
  (+2,+4,-1,-3),
  (+3,+4,-1,-2),
  (-3,+1,-4,+2),
  (-3,-4,+1,+2). (End)
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ...
For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3.
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12  - _Allan Bickle_, Aug 07 2024
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 75-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.

Crossrefs

Cf. A000043 (Mersenne exponents).
Cf. A000668 (Mersenne primes).
Cf. A001348 (Mersenne numbers with n prime).
Cf. a(n)=A112492(n, 2). Rightmost column of A008969.
a(n) = A118654(n, 1) = A118654(n-1, 3), for n > 0.
Subsequence of A132781.
Smallest number whose base b sum of digits is n: this sequence (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).
Cf. A008277, A048993 (columns k=2), A000918, A130330.
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

  • Haskell
    a000225 = (subtract 1) . (2 ^)
    a000225_list = iterate ((+ 1) . (* 2)) 0
    -- Reinhard Zumkeller, Mar 20 2012
    
  • Maple
    A000225 := n->2^n-1; [ seq(2^n-1,n=0..50) ];
    A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
  • Mathematica
    a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *)
    Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *)
    2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *)
    LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    A000225(n) = 2^n-1  \\ Michael B. Porter, Oct 27 2009
    
  • PARI
    concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
    
  • Python
    def A000225(n): return (1<Chai Wah Wu, Jul 06 2022
  • SageMath
    def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
    

Formula

G.f.: x/((1-2*x)*(1-x)).
E.g.f.: exp(2*x) - exp(x).
E.g.f. if offset 1: ((exp(x)-1)^2)/2.
a(n) = Sum_{k=0..n-1} 2^k. - Paul Barry, May 26 2003
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=0, a(1)=1. - Paul Barry, Jun 06 2003
Let b(n) = (-1)^(n-1)*a(n). Then b(n) = Sum_{i=1..n} i!*i*Stirling2(n,i)*(-1)^(i-1). E.g.f. of b(n): (exp(x)-1)/exp(2x). - Mario Catalani (mario.catalani(AT)unito.it), Dec 19 2003
a(n+1) = 2*a(n) + 1, a(0) = 0.
a(n) = Sum_{k=1..n} binomial(n, k).
a(n) = n + Sum_{i=0..n-1} a(i); a(0) = 0. - Rick L. Shepherd, Aug 04 2004
a(n+1) = (n+1)*Sum_{k=0..n} binomial(n, k)/(k+1). - Paul Barry, Aug 06 2004
a(n+1) = Sum_{k=0..n} binomial(n+1, k+1). - Paul Barry, Aug 23 2004
Inverse binomial transform of A001047. Also U sequence of Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A099393(n-1) - A020522(n-1) for n > 0. - Reinhard Zumkeller, Feb 07 2006
a(n) = A119258(n,n-1) for n > 0. - Reinhard Zumkeller, May 11 2006
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
Sum_{n>0} 1/a(n) = 1.606695152... = A065442, see A038631. - Philippe Deléham, Jun 27 2006
Stirling_2(n-k,2) starting from n=k+1. - Artur Jasinski, Nov 18 2006
a(n) = A125118(n,1) for n > 0. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1,2). - Ross La Haye, Jan 10 2008
a(n) = A024036(n)/A000051(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A024088(n)/A001576(n). -Reinhard Zumkeller, Feb 15 2009
a(2*n) = a(n)*A000051(n); a(n) = A173787(n,0). - Reinhard Zumkeller, Feb 28 2010
For n > 0: A179857(a(n)) = A024036(n) and A179857(m) < A024036(n) for m < a(n). - Reinhard Zumkeller, Jul 31 2010
From Enrique Pérez Herrero, Aug 21 2010: (Start)
a(n) = J_n(2), where J_n is the n-th Jordan Totient function: (A007434, is J_2).
a(n) = Sum_{d|2} d^n*mu(2/d). (End)
A036987(a(n)) = 1. - Reinhard Zumkeller, Mar 06 2012
a(n+1) = A044432(n) + A182028(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = A007283(n)/3 - 1. - Martin Ettl, Nov 11 2012
a(n+1) = A001317(n) + A219843(n); A219843(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2012
a(n) = det(|s(i+2,j+1)|, 1 <= i,j <= n-1), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: Q(0), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 - 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
E.g.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/Q(k+1))); (continued fraction).
G.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(n) = A000203(2^(n-1)), n >= 1. - Ivan N. Ianakiev, Aug 17 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n=n} n*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n)/(t_1+t_2 +...+t_n). - Mircea Merca, Dec 06 2013
a(0) = 0; a(n) = a(n-1) + 2^(n-1) for n >= 1. - Fred Daniel Kline, Feb 09 2014
a(n) = A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 07 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Binomial transform of A057427.
Sum_{n>=0} a(n)/n! = A090142. (End)
a(n) = A000918(n) + 1. - Miquel Cerda, Aug 09 2016
a(n+1) = (A095151(n+1) - A125128(n))/2. - Miquel Cerda, Aug 12 2016
a(n) = (A079583(n) - A000325(n+1))/2. - Miquel Cerda, Aug 15 2016
Convolution of binomial coefficient C(n,a(k)) with itself is C(n,a(k+1)) for all k >= 3. - Anton Zakharov, Sep 05 2016
a(n) = (A083706(n-1) + A000325(n))/2. - Miquel Cerda, Sep 30 2016
a(n) = A005803(n) + A005408(n-1). - Miquel Cerda, Nov 25 2016
a(n) = A279396(n+2,2). - Wolfdieter Lang, Jan 10 2017
a(n) = n + Sum_{j=1..n-1} (n-j)*2^(j-1). See a Jun 14 2017 formula for A000918(n+1) with an interpretation. - Wolfdieter Lang, Jun 14 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n+m) = a(n)*a(m) + a(n) + a(m). - Yuchun Ji, Jul 27 2018
a(n+m) = a(n+1)*a(m) - 2*a(n)*a(m-1). - Taras Goy, Dec 23 2018
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*2 + binomial(i+j-1, i) (empirical observation). - Tony Foster III, May 11 2019
From Peter Bala, Jun 27 2025: (Start)
For n >= 1, a(3*n)/a(n) = A001576(n), a(4*n)/a(n) = A034496(n), a(5*n)/a(n) = A020514(n) a(6*n)/a(n) = A034665(n), a(7*n)/a(n) = A020516(n) and a(8*n)/a(n) = A034674(n).
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A006095 (k = 3), A006096 (k = 4), A006097 (k = 5), A006110 (k = 6), A022189 (k = 7), A022190 (k = 8), A022191 (k = 9) and A022192 (k = 10).
The following are all examples of telescoping series:
Sum_{n >= 1} 2^n/(a(n)*a(n+1)) = 1; Sum_{n >= 1} 2^n/(a(n)*a(n+1)*a(n+2)) = 1/9.
In general, for k >= 1, Sum_{n >= 1} 2^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 2^n/(a(n)*a(n+2)) = 4/9, since 2^n/(a(n)*a(n+2)) = b(n) - b(n+1), where b(n) = (2/3)*(3*2^(n-1) - 1)/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+2)) = -2/9, since (-2)^n/(a(n)*a(n+2)) = c(n) - c(n+1), where c(n) = (1/3)*(-2)^n/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} 2^n/(a(n)*a(n+4)) = 18/175, since 2^n/(a(n)*a(n+4)) = d(n) - d(n+1), where d(n) = (120*8^n - 140*4^n + 45*2^n - 4)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+4)) = -26/525, since (-2)^n/(a(n)*a(n+4)) = e(n) - e(n+1), where e(n) = (-1)^n*(40*8^n - 24*4^n + 5*2^n)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)). (End)

Extensions

Name partially edited by Eric W. Weisstein, Sep 04 2021

A000668 Mersenne primes (primes of the form 2^n - 1).

Original entry on oeis.org

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Keywords

Comments

For a Mersenne number 2^n - 1 to be prime, the exponent n must itself be prime.
See A000043 for the values of n.
Primes that are repunits in base 2.
Define f(k) = 2k+1; begin with k = 2, a(n+1) = least prime of the form f(f(f(...(a(n))))). - Amarnath Murthy, Dec 26 2003
Mersenne primes other than the first are of the form 6n+1. - Lekraj Beedassy, Aug 27 2004. Mersenne primes other than the first are of the form 24n+7; see also A124477. - Artur Jasinski, Nov 25 2007
A034876(a(n)) = 0 and A034876(a(n)+1) = 1. - Jonathan Sondow, Dec 19 2004
Mersenne primes are solutions to sigma(n+1)-sigma(n) = n as perfect numbers (A000396(n)) are solutions to sigma(n) = 2n. In fact, appears to give all n such that sigma(n+1)-sigma(n) = n. - Benoit Cloitre, Aug 27 2002
If n is in the sequence then sigma(sigma(n)) = 2n+1. Is it true that this sequence gives all numbers n such that sigma(sigma(n)) = 2n+1? - Farideh Firoozbakht, Aug 19 2005
It is easily proved that if n is a Mersenne prime then sigma(sigma(n)) - sigma(n) = n. Is it true that Mersenne primes are all the solutions of the equation sigma(sigma(x)) - sigma(x) = x? - Farideh Firoozbakht, Feb 12 2008
Sum of divisors of n-th even superperfect number A061652(n). Sum of divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Indices of both triangular numbers and generalized hexagonal numbers (A000217) that are also even perfect numbers. - Omar E. Pol, May 10 2008, Sep 22 2013
Number of positive integers (1, 2, 3, ...) whose sum is the n-th perfect number A000396(n). - Omar E. Pol, May 10 2008
Vertex number where the n-th perfect number A000396(n) is located in the square spiral whose vertices are the positive triangular numbers A000217. - Omar E. Pol, May 10 2008
Mersenne numbers A000225 whose indices are the prime numbers A000043. - Omar E. Pol, Aug 31 2008
The digital roots are 1 if p == 1 (mod 6) and 4 if p == 5 (mod 6). [T. Koshy, Math Gaz. 89 (2005) p. 465]
Primes p such that for all primes q < p, p XOR q = p - q. - Brad Clardy, Oct 26 2011
All these primes, except 3, are Brazilian primes, so they are also in A085104 and A023195. - Bernard Schott, Dec 26 2012
All prime numbers p can be classified by k = (p mod 12) into four classes: k=1, 5, 7, 11. The Mersennne prime numbers 2^p-1, p > 2 are in the class k=7 with p=12*(n-1)+7, n=1,2,.... As all 2^p (p odd) are in class k=8 it follows that all 2^p-1, p > 2 are in class k=7. - Freimut Marschner, Jul 27 2013
From "The Guinness Book of Primes": "During the reign of Queen Elizabeth I, the largest known prime number was the number of grains of rice on the chessboard up to and including the nineteenth square: 524,287 [= 2^19 - 1]. By the time Lord Nelson was fighting the Battle of Trafalgar, the record for the largest prime had gone up to the thirty-first square of the chessboard: 2,147,483,647 [= 2^31 - 1]. This ten-digits number was proved to be prime in 1772 by the Swiss mathematician Leonard Euler, and it held the record until 1867." [du Sautoy] - Robert G. Wilson v, Nov 26 2013
If n is in the sequence then A024816(n) = antisigma(n) = antisigma(n+1) - 1. Is it true that this sequence gives all numbers n such that antisigma(n) = antisigma(n+1) - 1? Are there composite numbers with this property? - Jaroslav Krizek, Jan 24 2014
If n is in the sequence then phi(n) + sigma(sigma(n)) = 3n. Is it true that Mersenne primes are all the solutions of the equation phi(x) + sigma(sigma(x)) = 3x? - Farideh Firoozbakht, Sep 03 2014
a(5) = A229381(2) = 8191 is the "Simpsons' Mersenne prime". - Jonathan Sondow, Jan 02 2015
Equivalently, prime powers of the form 2^n - 1, see Theorem 2 in Lemos & Cambraia Junior. - Charles R Greathouse IV, Jul 07 2016
Primes whose sum of divisors is a power of 2. Primes p such that p + 1 is a power of 2. Primes in A046528. - Omar E. Pol, Jul 09 2016
From Jaroslav Krizek, Jan 19 2017: (Start)
Primes p such that sigma(p+1) = 2p+1.
Primes p such that A051027(p) = sigma(sigma(p)) = 2^k-1 for some k > 1.
Primes p of the form sigma(2^prime(n)-1)-1 for some n. Corresponding values of numbers n are in A016027.
Primes p of the form sigma(2^(n-1)) for some n > 1. Corresponding values of numbers n are in A000043 (Mersenne exponents).
Primes of the form sigma(2^(n+1)) for some n > 1. Corresponding values of numbers n are in A153798 (Mersenne exponents-2).
Primes p of the form sigma(n) where n is even; subsequence of A023195. Primes p of the form sigma(n) for some n. Conjecture: 31 is the only prime p such that p = sigma(x) = sigma(y) for distinct numbers x and y; 31 = sigma(16) = sigma(25).
Conjecture: numbers n such that n = sigma(sigma(n+1)-n-1)-1, i.e., A072868(n)-1.
Conjecture: primes of the form sigma(4*(n-1)) for some n. Corresponding values of numbers n are in A281312. (End)
[Conjecture] For n > 2, the Mersenne number M(n) = 2^n - 1 is a prime if and only if 3^M(n-1) == -1 (mod M(n)). - Thomas Ordowski, Aug 12 2018 [This needs proof! - Joerg Arndt, Mar 31 2019]
Named "Mersenne's numbers" by W. W. Rouse Ball (1892, 1912) after Marin Mersenne (1588-1648). - Amiram Eldar, Feb 20 2021
Theorem. Let b = 2^p - 1 (where p is a prime). Then b is a Mersenne prime iff (c = 2^p - 2 is totient or a term of A002202). Otherwise, if c is (nontotient or a term of A005277) then b is composite. Proof. Trivial, since, while b = v^g - 1 where v is even, v > 2, g is an integer, g > 1, b is always composite, and c = v^g - 2 is nontotient (or a term of A005277), and so is for any composite b = 2^g - 1 (in the last case, c = v^g - 2 is also nontotient, or a term of A005277). - Sergey Pavlov, Aug 30 2021 [Disclaimer: This proof has not been checked. - N. J. A. Sloane, Oct 01 2021]

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 135-136.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
  • Marcus P. F. du Sautoy, The Number Mysteries, A Mathematical Odyssey Through Everyday Life, Palgrave Macmillan, First published in 2010 by the Fourth Estate, an imprint of Harper Collins UK, 2011, p. 46. - Robert G. Wilson v, Nov 26 2013
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Bryant Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000225 (Mersenne numbers).
Cf. A000043 (Mersenne exponents).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • GAP
    A000668:=Filtered(List(Filtered([1..600], IsPrime),i->2^i-1),IsPrime); # Muniru A Asiru, Oct 01 2017
    
  • Maple
    A000668 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (isprime(i)) then
       return i
    fi: end:
    seq(A000668(n), n=1..31); # Jani Melik, Feb 09 2011
    # Alternate:
    seq(numtheory:-mersenne([i]),i=1..26); # Robert Israel, Jul 13 2014
  • Mathematica
    2^Array[MersennePrimeExponent, 18] - 1 (* Jean-François Alcover, Feb 17 2018, Mersenne primes with less than 1000 digits *)
    2^MersennePrimeExponent[Range[18]] - 1 (* Eric W. Weisstein, Sep 04 2021 *)
  • PARI
    forprime(p=2,1e5,if(ispseudoprime(2^p-1),print1(2^p-1", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043
    forprime(p=1, , if(LL(p), print1(p, ", "))) \\ Felix Fröhlich, Feb 17 2018
    
  • Python
    from sympy import isprime, primerange
    print([2**n-1 for n in primerange(1, 1001) if isprime(2**n-1)]) # Karl V. Keller, Jr., Jul 16 2020

Formula

a(n) = sigma(A061652(n)) = A000203(A061652(n)). - Omar E. Pol, Apr 15 2008
a(n) = sigma(A019279(n)) = A000203(A019279(n)), provided that there are no odd superperfect numbers. - Omar E. Pol, May 10 2008
a(n) = A000225(A000043(n)). - Omar E. Pol, Aug 31 2008
a(n) = 2^A000043(n) - 1 = 2^(A000005(A061652(n))) - 1. - Omar E. Pol, Oct 27 2011
a(n) = A000040(A059305(n)) = A001348(A016027(n)). - Omar E. Pol, Jun 29 2012
a(n) = A007947(A000396(n))/2, provided that there are no odd perfect numbers. - Omar E. Pol, Feb 01 2013
a(n) = 4*A134709(n) + 3. - Ivan N. Ianakiev, Sep 07 2013
a(n) = A003056(A000396(n)), provided that there are no odd perfect numbers. - Omar E. Pol, Dec 19 2016
Sum_{n>=1} 1/a(n) = A173898. - Amiram Eldar, Feb 20 2021

A004023 Indices of prime repunits: numbers k such that 11...111 (with k 1's) = (10^k - 1)/9 is prime.

Original entry on oeis.org

2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, 5794777, 8177207
Offset: 1

Views

Author

Keywords

Comments

People who search for repunit primes or repdigit primes may be looking for this entry.
The indices of primes with digital product (i.e., product of digits) equal to 1.
As of August 2014, only the first five repunits, through (10^1031-1)/9, have been proved prime. The next four repunits are known only to be probable primes and have not been proved to be prime. - Robert Baillie, Aug 17 2014
These indices p must also be prime. If p is not prime, say p = m*n, then 10^(m*n) - 1 = ((10^m)^n) - 1 => 10^m - 1 divides 10^(m*n) - 1. Since 9 divides 10^m - 1 or (10^m - 1)/9 = q, it follows q divides (10^p - 1)/9. This is a result of the identity, a^n - b^n = (a - b)(a^(n-1) + a^(n-2)*b + ... + b^(n-1)). - Cino Hilliard, Dec 23 2008
The numbers R_n = 11...111 = (10^n - 1)/9 with n in this sequence A004023, except for n = 2, are prime repunits in base ten, so they are prime Brazilian numbers belonging to A085104. [See Links: Les nombres brésiliens.] - Bernard Schott, Dec 24 2012
Search limit is 10800000, currently. - Serge Batalov, Jul 01 2021
On March 22 2022 the probable prime R49081 was proved to be a prime, and on May 15 2023 the probable prime R86453 was proved to be a prime. - Bassam Abdul-Baki, Dec 17 2024

Examples

			2 appears because the 2-digit repunit 11 is prime.
3 does not appear because 111 = 3 * 37 is not prime.
19 appears because the 19-digit repunit 1111111111111111111 is prime.
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 19, pp 6, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley, 1994; see p 146 problem 22.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 235.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 142857 at pp. 197-198.

Crossrefs

See A004022 for the actual primes.

Programs

  • Magma
    [p: p in PrimesUpTo(500) | IsPrime((10^p - 1) div 9)]; // Vincenzo Librandi, Nov 06 2014
    
  • Mathematica
    Select[Range[271000], PrimeQ[FromDigits[PadRight[{}, #, 1]]] &] (* Harvey P. Dale, Nov 05 2011 *)
    repUnsUpTo[k_] := ParallelMap[If[PrimeQ[#] && PrimeQ[(10^# - 1)/9], #, Nothing] &, Range[k]]; repUnsUpTo[5000] (* Mikk Heidemaa, Apr 24 2017 *)
  • PARI
    forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1(x","))) \\ Cino Hilliard, Dec 23 2008
    
  • Python
    from sympy import isprime; {print(n, end = ', ') for n in range(1, 10**7) if isprime(n) and isprime(10**n//9)} # (Note that sympy.isprime is only a pseudo-primality test.) - Ya-Ping Lu, Dec 20 2021, edited by M. F. Hasler, Mar 28 2022

Extensions

a(6) = 49081 PRP found by Harvey Dubner - posting to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU) Sep 09, 1999; proved prime by Paul Underwood, Mar 21 2022.
a(7) = 86453 found using pfgw (a faster version of PrimeForm) on Oct 26 2000 by Lew Baxter (posting to Number Theory List), Oct 26, 2000; proved prime by Andreas Enge, May 16 2023.
a(8) = 109297 was apparently discovered independently by (in alphabetical order) Paul Bourdelais and Harvey Dubner around Mar 26-28 2007.
a(9) = 270343, was found Jul 11 2007 by Maksym Voznyy and Anton Budnyy, subsequently confirmed as a(9) (see Repunit Primes Project link) by Robert Price, Dec 14 2010
a(10) = 5794777 was found Apr 20 2021 by Ryan Propper and Serge Batalov
a(11) = 8177207 was found May 08 2021 by Ryan Propper and Serge Batalov

A004022 Primes of the form (10^k - 1)/9. Also called repunit primes or repdigit primes.

Original entry on oeis.org

11, 1111111111111111111, 11111111111111111111111
Offset: 1

Views

Author

Keywords

Comments

The next term corresponds to k = 317 and is too large to include: see A004023.
Also called repunit primes or prime repunits.
Also, primes with digital product = 1.
The number of 1's in these repunits must also be prime. Since the number of 1's in (10^k-1)/9 is k, if k = p*m then (10^(p*m)-1) = (10^p)^m-1 => (10^p-1)/9 = q and q divides (10^k-1). This follows from the identity a^k - b^k = (a-b)*(a^(k-1) + a^(k-2)*b + ... + b^(k-1)). - Cino Hilliard, Dec 23 2008
A subset of A020449, ..., A020457, A036953, ..., cf. link to OEIS index. - M. F. Hasler, Jul 27 2015
The terms in this sequence, except 11 which is not Brazilian, are prime repunits in base ten, so they are Brazilian primes belonging to A085104 and A285017. - Bernard Schott, Apr 08 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 11. Graham, Knuth and Patashnik, Concrete mathematics, Addison-Wesley, 1994; see p. 146, problem 22.
  • M. Barsanti, R. Dvornicich, M. Forti, T. Franzoni, M. Gobbino, S. Mortola, L. Pernazza and R. Romito, Il Fibonacci N. 8 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 2004, Problem 8.10.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.

Crossrefs

Subsequence of A020449.
A116692 is another version of repunit primes or repdigit primes. - N. J. A. Sloane, Jan 22 2023
See A004023 for the number of 1's.
Cf. A046413.

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is (10^n - 1) div 9 ]; // Vincenzo Librandi, Nov 08 2014
    
  • Mathematica
    lst={}; Do[If[PrimeQ[p = (10^n - 1)/9], AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *)
    Select[Table[(10^n - 1) / 9, {n, 500}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *)
    Select[Table[FromDigits[PadRight[{},n,1]],{n,30}],PrimeQ] (* Harvey P. Dale, Apr 07 2018 *)
  • PARI
    forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1((10^x-1)/9","))) \\ Cino Hilliard, Dec 23 2008
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from (t for t in (int("1"*k) for k in count(1)) if isprime(t))
    print(list(islice(agen(), 4))) # Michael S. Branicky, Jun 09 2022

Formula

a(n) = A002275(A004023(n)).

Extensions

Edited by Max Alekseyev, Nov 15 2010
Name expanded by N. J. A. Sloane, Jan 22 2023

A023001 a(n) = (8^n - 1)/7.

Original entry on oeis.org

0, 1, 9, 73, 585, 4681, 37449, 299593, 2396745, 19173961, 153391689, 1227133513, 9817068105, 78536544841, 628292358729, 5026338869833, 40210710958665, 321685687669321, 2573485501354569, 20587884010836553, 164703072086692425
Offset: 0

Views

Author

Keywords

Comments

Gives the (zero-based) positions of odd terms in A007556 (numbers n such that A007556(a(n)) mod 2 = 1). - Farideh Firoozbakht, Jun 13 2003
{1, 9, 73, 585, 4681, ...} is the binomial transform of A003950. - Philippe Deléham, Jul 22 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
This is the sequence A(0,1;7,8;2) = A(0,1;8,0;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) is the total number of squares the carpetmaker has removed after the n-th step of a Sierpiński carpet production. - Ivan N. Ianakiev, Oct 22 2013
For n >= 1, a(n) is the total number of holes in a box fractal (start with 8 boxes, 1 hole) after n iterations. See illustration in link. - Kival Ngaokrajang, Jan 27 2015
From Bernard Schott, May 01 2017: (Start)
Except for 0, 1 and 73, all the terms are composite because a(n) = ((2^n - 1) * (4^n + 2^n + 1))/7.
For n >= 3, all terms are Brazilian repunits numbers in base 8, and so belong to A125134.
a(3) = 73 is the only Brazilian prime in base 8, and so it belongs to A085104 and A285017. (End)

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal.............decimal
0....................0
1....................1
11...................9
111.................73
1111...............585
11111.............4681
111111...........37449
1111111.........299593
11111111.......2396745
111111111.....19173961
1111111111...153391689
etc. ...............etc. (End)
a(4) = (8^4 - 1)/7 = 585 = 1111_8 = (2^4 - 1) * (4^4 + 2^4 + 1)/7 = 15 * 273/7 = 15 * 39. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

Also sum of cubes of divisors of 2^(n-1): a(n) = A001158(A000079(n-1)). - Labos Elemer, Apr 10 2003 and Farideh Firoozbakht, Jun 13 2003
a(n) = A033138(3n-2). - Alexandre Wajnberg, May 31 2005
From Philippe Deléham, Oct 12 2006: (Start)
a(0) = 0, a(n) = 8*a(n-1) + 1 for n>0.
G.f.: x/((1-8x)*(1-x)). (End)
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = 7*a(n-1) + 8*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3) = 9*a(n-1) - 8*a(n-2), a(0)=0, a(1)=1, a(2)=9. Observation by Gary Detlefs. See the W. Lang comment and link. (End)
a(n) = Sum_{k=0..n-1} 8^k. - Doug Bell, May 26 2017
E.g.f.: exp(x)*(exp(7*x) - 1)/7. - Stefano Spezia, Mar 11 2023

A125134 "Brazilian" numbers ("les nombres brésiliens" in French): numbers n such that there is a natural number b with 1 < b < n-1 such that the representation of n in base b has all equal digits.

Original entry on oeis.org

7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90
Offset: 1

Views

Author

Bernard Schott, Jan 21 2007

Keywords

Comments

The condition b < n-1 is important because every number n has representation 11 in base n-1. - Daniel Lignon, May 22 2015
Every even number >= 8 is Brazilian. Odd Brazilian numbers are in A257521. - Daniel Lignon, May 22 2015
Looking at A190300, it seems that asymptotically 100% of composite numbers are Brazilian, while looking at A085104, it seems that asymptotically 0% of prime numbers are Brazilian. The asymptotic density of Brazilian numbers would thus be 100%. - Daniel Forgues, Oct 07 2016

Examples

			15 is a member since it is 33 in base 4.
		

References

  • Pierre Bornsztein, "Hypermath", Vuibert, Exercise a35, p. 7.

Crossrefs

Cf. A190300 and A257521 (odd Brazilian numbers).
Cf. A085104 (prime Brazilian numbers).

Programs

  • Maple
    isA125134 := proc(n) local k: for k from 2 to n-2 do if(nops(convert(convert(n,base,k),set))=1)then return true: fi: od: return false: end: A125134 := proc(n) option remember: local k: if(n=1)then return 7: fi: for k from procname(n-1)+1 do if(isA125134(k))then return k: fi: od: end: seq(A125134(n),n=1..65); # Nathaniel Johnston, May 24 2011
  • Mathematica
    fQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; Select[Range[4, 90], fQ] (* T. D. Noe, May 07 2013 *)
  • PARI
    for(n=4,100,for(b=2,n-2,d=digits(n,b);if(vecmin(d)==vecmax(d),print1(n,", ");break))) \\ Derek Orr, Apr 30 2015
    
  • PARI
    is(n)=my(m); if(!isprime(n), return(if(issquare(n,&m), m>3 && (!isprime(m) || m==11), n>6))); for(b=2,n-2, m=digits(n,b); for(i=2,#m, if(m[i]!=m[i-1], next(2))); return(1)); 0 \\ Charles R Greathouse IV, Aug 09 2017

Formula

a(n) ~ n. - Charles R Greathouse IV, Aug 09 2017

Extensions

More terms from Nathaniel Johnston, May 24 2011

A002383 Primes of form k^2 + k + 1.

Original entry on oeis.org

3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
Offset: 1

Views

Author

Keywords

Comments

Also primes p such that 4p-3 is square. - Giovanni Teofilatto, Sep 07 2005
Also these primes are sums of 1 and some consecutive even numbers starting at 2; e.g., 31 = 1+2+4+6+8+10. - Labos Elemer, Apr 15 2003
Also primes of form n^2 - n + 1 (Prime central polygonal numbers, A002061). - Zak Seidov, Jan 26 2006
Also primes which are of the form TriangularNumber(n) + TriangularNumber(n+2): 7 = 1+6, 13 = 3+10, 31 = 10+21, 43 = 15+28, 73 = 28+45, ... - Vladimir Joseph Stephan Orlovsky, Apr 03 2009
It is not known whether there are infinitely many primes of the form n^2+n+1. See Rose reference. - Daniel Tisdale, Jun 27 2009
These numbers when >= 7 are prime repunits 111_n in a base n >= 2, so except for 3, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", Sections V.4 - V.5.) A002383 is generated by A002384 which lists the bases n of 111_n. A002383 = A053183 Union A185632. - Bernard Schott, Dec 22 2012
Conjecture: the set of these numbers, except 3, is the intersection of sets A085104 and A059055. See A225148. - Thomas Ordowski, May 02 2013
For a(n)>13, the fractional part of square root of a(n) starts with digit 5 (see A034101). - Charles Kusniec, Sep 06 2022

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
  • H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A237037, A237038, A237039, A237040 (from semiprimes of form n^3 + 1).
See also A034101.

Programs

  • Magma
    [ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
    
  • Maple
    select(isprime, [j^2+j+1$j=1..200])[];  # Alois P. Heinz, Apr 20 2022
  • Mathematica
    Select[Table[n^2+n+1, {n,250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    list(lim)=select(n->isprime(n),vector((sqrt(4*lim-3)-1)\2,k,k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022

Formula

a(n) = A002384(n)^2 + A002384(n) + 1 = (A088503(n-1)^2 + 3)/4 = (A110284(n) + 3)/4. - Ray Chandler, Sep 07 2005

Extensions

Extended by Ray Chandler, Sep 07 2005

A023195 Prime numbers that are the sum of the divisors of some n.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 5113, 8011, 8191, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 131071, 147073, 292561, 459007, 492103, 524287, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373
Offset: 1

Views

Author

Keywords

Comments

If n > 2 and sigma(n) is prime, then n must be an even power of a prime number. For example, 1093 = sigma(3^6). - T. D. Noe, Jan 20 2004
All primes of the form 2^n-1 (Mersenne primes) are in the sequence because if n is a natural number then sigma(2^(n-1)) = 2^n-1. So A000668 is a subsequence of this sequence. If sigma(n) is prime then n is of the form p^(q-1) where both p & q are prime (the proof is easy). - Farideh Firoozbakht, May 28 2005
Primes of the form 1 + p + p^2 + ... + p^k where p is prime.
If n = sigma(p^k) is in the sequence, then k+1 is prime. - Franklin T. Adams-Watters, Dec 19 2011
Primes that are a repunit in a prime base. - Franklin T. Adams-Watters, Dec 19 2011.
Except for 3, these primes are particular Brazilian primes belonging to A085104. These prime numbers are also Brazilian primes of the form (p^x - 1)/(p^y - 1), p prime, belonging to A003424, with here x is prime, and y = 1. [See section V.4 of Quadrature article in Links.] - Bernard Schott, Dec 25 2012
From Bernard Schott, Dec 25 2012: (Start)
Others subsequences of this sequence:
A053183 for 111_p = p^2 + p + 1 when p is prime.
A190527 for 11111_p = p^4 + p^3 + p^2 + p + 1 when p is prime.
A194257 for 1111111_p = p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime. (End)
Subsequence of primes from A002191. - Michel Marcus, Jun 10 2014

Examples

			307 = 1 + 17 + 17^2; 307 and 17 are primes.
		

Crossrefs

Intersection of A002191 and A000040.
Cf. A000203, A000668, A023194 (the n that produce these primes), A053696, A085104, A003424, A053183, A190527, A194257.

Programs

  • Mathematica
    t={3}; lim=10^9; n=1; While[p=Prime[n]; k=2; s=1+p+p^2; sHarvey P. Dale, Jun 18 2022 *)
  • PARI
    upto(lim)=my(v=List([3]),t); forprime(p=2,solve(x=1,lim^(1/4), x^4+x^3+x^2+x+1-lim), forprime(e=5,1+log(lim)\log(p), if(isprime(t=sigma(p^(e-1))) && t<=lim, listput(v,t)))); forprime(p=2, solve(x=1,lim^(1/2),x^2+x+1-lim), if(isprime(t=p^2+p+1), listput(v,t))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 20 2011
    
  • Python
    from sympy import isprime, divisor_sigma
    A023195_list = sorted(set([3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)])) # Chai Wah Wu, Jul 23 2016

A053696 Numbers that can be represented as a string of three or more 1's in a base >= 2.

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 43, 57, 63, 73, 85, 91, 111, 121, 127, 133, 156, 157, 183, 211, 241, 255, 259, 273, 307, 341, 343, 364, 381, 400, 421, 463, 507, 511, 553, 585, 601, 651, 703, 757, 781, 813, 820, 871, 931, 993, 1023, 1057, 1093, 1111, 1123, 1191
Offset: 1

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

Numbers of the form (b^n-1)/(b-1) for n > 2 and b > 1. - T. D. Noe, Jun 07 2006
Numbers m that are nontrivial repunits for any base b >= 2. For k = 2 (I use k for the exponent since n is used as the index in a(n)) we get (b^k-1)/(b-1) = (b^2-1)/(b-1) = b+1, so every integer m >= 3 is a 2-digit repunit in base b = m-1. And for n = 1 (the 1-digit degenerate repunit) we get (b-1)/(b-1) = 1 for any base b >= 2. If we considered all k >= 1 we would get the sequence of all positive integers except 2 since it is the smallest uniform base used in positional representation (2 might be seen as the "repunit" in a nonpositional base representation such as the Roman numerals where 2 is expressed as II). - Daniel Forgues, Mar 01 2009
These repunits numbers belong to Brazilian numbers (A125134) (see Links: "Les nombres brésiliens" - section IV, p. 32). - Bernard Schott, Dec 18 2012
The Brazilian primes (A085104) belong to this sequence. - Bernard Schott, Dec 18 2012

Examples

			a(5) = 31 because 31 can be written as 111 base 5 (or indeed 11111 base 2).
		

Crossrefs

Cf. A090503 (a subsequence), A119598 (numbers that are repunits in four or more bases), A125134, A085104.
Cf. A108348.

Programs

  • Haskell
    a053696 n = a053696_list !! (n-1)
    a053696_list = filter ((> 1) . a088323) [2..]
    -- Reinhard Zumkeller, Jan 22 2014, Nov 26 2013
  • Maple
    N:= 10^4: # to get all terms <= N
    V:= Vector(N):
    for b from 2 while (b^3-1)/(b-1) <= N do
      inds:= [seq((b^k-1)/(b-1), k=3..ilog[b](N*(b-1)+1))];
      V[inds]:= 1;
    od:
    select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    fQ[n_] := Block[{d = Rest@ Divisors[n - 1]}, Length@ d > 2 && Length@ Select[ IntegerDigits[n, d], Union@# == {1} &] > 1]; Select[ Range@ 1200, fQ]
    lim=1000; Union[Reap[Do[n=3; While[a=(b^n-1)/(b-1); a<=lim, Sow[a]; n++], {b, 2, Floor[Sqrt[lim]]}]][[2, 1]]]
    Take[Union[Flatten[With[{l=Table[PadLeft[{},n,1],{n,3,100}]}, Table[ FromDigits[#,n]&/@l,{n,2,100}]]]],80] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,sqrt(lim),e=3;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Oct 06 2011
    
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,lim^(1/3),e=4;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(concat(Vec(v), vector((sqrtint (lim\1*4-3)-3)\2,i,i^2+3*i+3)),,8) \\ Charles R Greathouse IV, May 30 2013
    

Formula

a(n) ~ n^2 since as n grows the density of repunits of degree 2 among all the repunits tends to 1. - Daniel Forgues, Dec 09 2008
A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014
Showing 1-10 of 65 results. Next