Paul Bourdelais has authored 18 sequences. Here are the ten most recent ones:
A366680
Numbers k such that (34^k + 1)/35 is prime.
Original entry on oeis.org
3, 294277, 735439
Offset: 1
3 is a term since (34^3 + 1)/35 = 1123 is a prime.
-
Do[ If[ PrimeQ[ (34^n+1)/35], Print[n]], {n, 0, 18000}]
-
is(n) = my(q=(34^n+1)/35); (denominator(q)==1) && ispseudoprime(q);
A350036
Numbers k such that (81^k + 1)/82 is prime.
Original entry on oeis.org
3, 5, 701, 829, 1031, 1033, 7229, 19463, 370421
Offset: 1
3 is a term since (81^3 + 1)/82 = 6481 is a prime.
-
Do[ If[ PrimeQ[ (81^n+1)/82], Print[n]], {n, 0, 1000000}]
-
is(n)=isprime((81^n+1)/82)
A348170
Numbers k such that (35^k - 1)/34 is prime.
Original entry on oeis.org
313, 1297, 568453
Offset: 1
313 is a term since (35^313 - 1)/34 is a prime. It has 482 digits in base 10.
-
Do[ If[ PrimeQ[ (35^n-1)/34], Print[n]], {n, 0, 600000}]
-
is(n)=isprime((35^n-1)/34)
A345402
Numbers k such that (42^k-1)/41 is prime.
Original entry on oeis.org
2, 1319, 337081
Offset: 1
2 is a member since (42^2-1)/41 = 43 is prime.
-
Do[ If[ PrimeQ[ (42^n-1)/41], Print[n]], {n, 2, 400000}]
-
is(n)=isprime((42^n-1)/41)
A347138
Numbers k such that (100^k + 1)/101 is prime.
Original entry on oeis.org
3, 293, 461, 11867, 90089
Offset: 1
3 is a term since (100^3 + 1)/101 = 9901 is a prime.
-
Do[ If[ PrimeQ[ (100^n + 1)/101], Print[n]], {n, 0, 18000}]
-
is(n)=isprime((100^n+1)/101)
A339922
Numbers k such that 20^k - 3 is prime.
Original entry on oeis.org
1, 2, 5, 7, 9, 11, 15, 37, 59, 119, 154, 439, 745, 799, 1260, 1444, 3306, 8890, 14604, 15869, 20195, 99055, 186554, 396120
Offset: 1
1 is a term since 20^1 - 3 = 17 is a prime.
-
Do[ If[ PrimeQ[ 20^n - 3], Print[n]], {n, 0, 200000}]
-
is(n)=isprime(20^n - 3)
A339924
Numbers k such that 14^k - 3 is prime.
Original entry on oeis.org
1, 2, 3, 10, 18, 19, 27, 122, 184, 347, 448, 542, 1685, 5618, 6208, 9867, 25522, 37688, 47067, 79195, 114592, 251797
Offset: 1
1 is a term since 14^1 - 3 = 11 is a prime.
-
Do[ If[ PrimeQ[ 14^n - 3], Print[n]], {n, 0, 300000}]
-
is(n)=isprime(14^n - 3)
A339923
Numbers k such that 14^k + 3 is prime.
Original entry on oeis.org
1, 2, 9, 24, 42, 74, 221, 620, 14064, 36697, 152048, 384558
Offset: 1
1 is a term since 14^1 + 3 = 17 is a prime.
-
Do[ If[ PrimeQ[ 14^n + 3], Print[n]], {n, 0, 200000}]
-
is(n)=isprime(14^n + 3)
a(12) corresponds to a probable prime discovered by
Paul Bourdelais, Jan 06 2021
A339921
Numbers k such that 20^k + 3 is prime.
Original entry on oeis.org
1, 5, 7, 13, 15, 18, 22, 61, 85, 208, 271, 898, 2142, 2856, 4392, 17171, 74886, 78901, 271951, 326600
Offset: 1
1 is a term since 20^1 + 3 = 23 is a prime.
-
Do[ If[ PrimeQ[ 20^n + 3], Print[n]], {n, 0, 100000}]
-
is(n)=isprime(20^n + 3)
a(19)-a(20) correspond to probable primes discovered by
Paul Bourdelais, Jan 06 2021
A309533
Numbers k such that (144^k + 1)/145 is prime.
Original entry on oeis.org
23, 41, 317, 3371, 45259, 119671
Offset: 1
Cf.
A000978,
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A126856,
A185240.
-
Do[p=Prime[n]; If[PrimeQ[(144^p + 1)/145], Print[p]], {n, 1, 1000000}]
-
is(n)=ispseudoprime((144^n+1)/145)
Comments