cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel Lignon

Daniel Lignon's wiki page.

Daniel Lignon has authored 23 sequences. Here are the ten most recent ones:

A329383 Positive integers that have more Brazilian representations than any smaller positive integer.

Original entry on oeis.org

1, 7, 15, 24, 40, 60, 120, 180, 336, 360, 720, 840, 1260, 1440, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880
Offset: 1

Author

Daniel Lignon, Dec 30 2019

Keywords

Comments

By analogy with highly composite numbers (A002182), these numbers could be called highly Brazilian numbers.
Also, records in A284758.
The representation n = 11_(n-1) is allowed in A066044, but it is not allowed for Brazilian numbers. Hence 3 = 11_2 = A066044(2) is not Brazilian and therefore not highly Brazilian. However, except for 3, the sequences A066044 and this one are the same.
The first time the name "highly Brazilian number" was used is in Daniel Lignon's book in reference. - Bernard Schott, Jul 27 2020

Examples

			40 is a term since 40 = 1111_3 = 55_7 = 44_9 = 22_19 and it's the smallest number with 4 representations as a Brazilian number.
		

References

  • D. Lignon, Dictionnaire de (presque) tous les nombres entiers, Editions Ellipses, 2012, see p. 420. [In French.]

A307624 Least number whose digits can be used to form exactly n distinct composite numbers (not necessarily using all digits).

Original entry on oeis.org

1, 4, 12, 18, 46, 103, 122, 104, 102, 108, 124, 128, 126, 148, 246, 468, 1002, 1008, 1137, 1077, 1014, 1055, 1044, 1022, 1124, 1126, 1079, 1145, 1037, 1224, 1266, 1448, 1379, 1039, 1367, 1036, 1057, 1034, 1027, 1047, 1024, 1023, 1025, 1029, 1026, 1068, 1247, 1235, 3579, 1234, 1257, 1289, 1239, 1236, 1278, 1245
Offset: 0

Author

Daniel Lignon, Apr 19 2019

Keywords

Comments

a(n) always exists because with 10^n, you can form exactly n composite numbers... but, in general, it's not the least.

Examples

			The digits of 103 can be used to form the numbers 1, 3, 10, 13, 30, 31, 103, 130, 301, and 310. Of these, exactly 5 are composite (10, 30, 130, 301 = 7*43, and 310). Since 103 is the smallest such number, a(5) = 103.
		

Crossrefs

Cf. A002808 (composite numbers).
Cf. A076449 (the same with primes instead of composite numbers) and A307623 (the sequence of corresponding records).

Programs

  • Mathematica
    f[n_] := Length[Union[ Select[FromDigits /@ Flatten[Permutations /@ Subsets[IntegerDigits[n]],  1], CompositeQ]]];
    t = Table[0, {100}]; Do[ a = f[n]; If[a < 100 && t[[a + 1]] == 0, t[[a + 1]] = n], {n, 100000}]; t

A307623 Numbers that set a record for the number of distinct composite numbers that can be obtained by permuting some subset of their digits.

Original entry on oeis.org

1, 4, 12, 18, 46, 102, 108, 124, 126, 148, 246, 468, 1002, 1008, 1014, 1022, 1023, 1025, 1026, 1068, 1234, 1236, 1245, 1248, 1268, 1458, 2456, 2468, 10023, 10025, 10026, 10068, 10124, 10125, 10146, 10224, 10234, 10236, 10245, 10248, 10458, 12345, 12348, 12369
Offset: 1

Author

Daniel Lignon, Apr 19 2019

Keywords

Examples

			108 is in this sequence because the number of composite numbers which can be obtained by permuting some or all of digits of 108 is larger than the number of composite numbers obtainable in the same way for any smaller integer. With 108, you can form 9 composite numbers: 8, 10, 18, 80, 81, 108, 180, 801, 810. It's impossible to form n >= 9 composite numbers in the same way with any integer < 108.
		

Crossrefs

Cf. A072857 (the same with primes instead of composite numbers) and A307624.

Programs

  • Mathematica
    f[n_] := Length[Union[ Select[FromDigits /@ Flatten[Permutations /@ Subsets[IntegerDigits[n]],  1], CompositeQ]]];
    d=-1; res={};Do[b=f[n];If[b>d,AppendTo[res,n];d=b],{n,10000}];res

A320726 Composite numbers such that all other numbers obtained from all permutations of all subsets of the digits are noncomposite.

Original entry on oeis.org

4, 6, 8, 9, 10, 20, 22, 30, 32, 33, 35, 50, 55, 70, 77, 111
Offset: 1

Author

Daniel Lignon, Oct 19 2018

Keywords

Comments

Sequence is finite since it is a subsequence of a finite sequence (A071070).
This is complete: there are only 16 terms in the sequence.

Examples

			371 is in this sequence because it's composite and none of the numbers 1, 3, 7, 13, 17, 31, 37, 137, 173, 317, 713 and 731 is composite.
		

Crossrefs

Subsequence of A071070. Cf. A320725 (the same for prime numbers).

Programs

  • Mathematica
    Select[Range[4, 10^3], Function[n, And[CompositeQ@ n, NoneTrue[DeleteCases[Flatten@ Map[If[Length@ # > 1, FromDigits /@ Permutations@ #, #] &, Rest@ Subsets@ IntegerDigits@ n], ?(# == n &)], CompositeQ]]]] (* _Michael De Vlieger, Nov 13 2018 *)

A320725 Prime numbers such that all other numbers obtained from all permutations of all subsets of the digits are nonprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 6469
Offset: 1

Author

Daniel Lignon, Oct 19 2018

Keywords

Comments

Sequence is finite since it is a subsequence of a finite sequence (A071062).
This is complete: there are only 14 terms in the sequence.

Examples

			449 is in this sequence because it's prime and none of the numbers 4, 9, 44, 49, 94, 494 and 944 is prime.
		

Crossrefs

Subsequence of A071062.
Cf. A320726 (the same for composite numbers).

Programs

  • Mathematica
    Select[Prime@ Range[10^3], NoneTrue[DeleteCases[FromDigits /@ Rest@ Union@ Apply[Join, Permutations /@ Subsets@ IntegerDigits@ #], #], PrimeQ] &] (* Michael De Vlieger, Oct 22 2018 *)

A262043 Carmichael numbers (A002997) that are not absolute Euler pseudoprimes (A033181).

Original entry on oeis.org

561, 1105, 2821, 6601, 8911, 10585, 29341, 52633, 62745, 63973, 101101, 115921, 126217, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 410041, 512461, 552721, 658801, 748657, 825265, 852841, 1024651, 1033669, 1082809, 1152271, 1193221, 1461241, 1569457, 1909001
Offset: 1

Author

Daniel Lignon, Sep 09 2015

Keywords

Comments

These are composite numbers n such that b^(n-1) == 1 (mod n) and abs(b^((n-1)/2) mod n) <> 1 for every b coprime to n.

Crossrefs

Cf. A002997 (Carmichael numbers), A033181 (absolute Euler pseudoprimes).

A263239 Euler pseudoprimes to base 9: composite integers such that abs(9^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

4, 28, 91, 121, 286, 532, 671, 703, 949, 1036, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4636, 4961, 5551, 6364, 6601, 7381, 8401, 8911, 10585, 11011, 11476, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 19684, 23521, 24046, 24661, 24727
Offset: 1

Author

Daniel Lignon, Oct 12 2015

Keywords

Comments

Even numbers are permitted since 9 is an integer square. - Charles R Greathouse IV, Oct 12 2015

Crossrefs

Cf. A020138 (pseudoprimes to base 9).
Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudo9Q[n_]:=(Mod[9^((n-1)/2)+1,n]==0 ||Mod[9^((n-1)/2)-1,n]==0) && Not[PrimeQ[n]];
    Select[Range[2,200000],eulerPseudo9Q]
  • PARI
    is(n) = abs(centerlift(Mod(3, n)^(n-1)))==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 12 2015

A262053 Euler pseudoprimes to base 6: composite integers such that abs(6^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, 10585, 11041, 11137, 12209, 14701, 15841, 17329, 18361, 20017, 21049, 22049, 29341, 31021, 31621, 34441, 36301, 38081, 39305, 39493, 41041, 43621, 44801, 46657
Offset: 1

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), this sequence (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 6] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(6, (2*n+1))^n == 1 ||  Mod(6, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A262052 Euler pseudoprimes to base 5: composite integers such that abs(5^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 13333, 14981, 15751, 15841, 16297, 21361, 23653, 24211, 25351, 29539, 30673, 38081, 40501, 41041, 44173, 44801, 46657, 47641, 48133, 53971, 56033, 67921, 75361, 79381, 90241, 98173, 100651, 102311
Offset: 1

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), this sequence (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[27000] + 1, eulerPseudoQ[#, 5] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(5, (2*n+1))^n == 1 ||  Mod(5, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A262051 Euler pseudoprimes to base 3: composite integers such that abs(3^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 30857, 31621, 31697, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 72041, 74593, 75361
Offset: 1

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), this sequence (base 3), A001567 (base 4), A262052 (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[26000] + 1, eulerPseudoQ[#, 3] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(3, (2*n+1))^n == 1 ||  Mod(3, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015