A002275
Repunits: (10^n - 1)/9. Often denoted by R_n.
Original entry on oeis.org
0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 235-237.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
- Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
- Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.
- David Wasserman, Table of n, a(n) for n = 0..1000
- Eudes Antonio Costa and Fernando Soares Carvalho, On repunit polynomials sequence, Braz. Elec. J. Math. (2024). See pp. 2, 15.
- Eudes Antonio Costa, Douglas Catulio Santos, Paula Maria Machado Cruz Catarino, and Elen Viviani Pereira Spreafico, On Gaussian and Quaternion Repunit Numbers, Rev. Mat. UFOP (Brazil, 2024) Vol. 2. See p. 2.
- Eudes Antonio Costa, Paula Maria Machado Cruz Catarino, and Douglas Catulio Santos, A Study of the Symmetry of the Tricomplex Repunit Sequence with Repunit Sequence, Symmetry (2024) Vol. 17, No. 1, 28.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See pp. 3, 18.
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- Douglas Catulio Santos, Eudes Antonio Costa, and Paula Maria Machado Cruz Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- W. M. Snyder, Factoring Repunits, Am. Math. Monthly, Vol. 89, No. 7 (1982), pp. 462-466.
- Amelia Carolina Sparavigna, On Repunits, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Repunit.
- Eric Weisstein's World of Mathematics, Demlo Number.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Wikipedia, Repunit.
- Amin Witno, A Family of Sequences Generating Smith Numbers, J. Int. Seq. 16 (2013) #13.4.6.
- Stephen Wolfram, A New Kind of Science.
- Samuel Yates, The Mystique of Repunits, Math. Mag., Vol. 51, No. 1 (1978), pp. 22-28.
- Index to Elementary Cellular Automata.
- Index entries for 10-automatic sequences.
- Index entries for sequences related to cellular automata.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
- Index entries for "core" sequences.
Cf.
A000042,
A002276,
A002277,
A002278,
A002279,
A002280,
A002281,
A002282,
A002283,
A004023,
A046053,
A059988,
A065444,
A075412,
A075415,
A083278,
A095370,
A102380,
A125134,
A178635,
A204845,
A204846,
A204847,
A204848,
A206244.
-
a002275 = (`div` 9) . subtract 1 . (10 ^)
a002275_list = iterate ((+ 1) . (* 10)) 0
-- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
-
[(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
-
seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
-
Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *)
Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
-
a[0]:0$
a[1]:1$
a[n]:=11*a[n-1]-10*a[n-2]$
A002275(n):=a[n]$
makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
-
my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
-
print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
-
[lucas_number1(n, 11, 10) for n in range(21)] # Zerinvary Lajos, Apr 27 2009
A004022
Primes of the form (10^k - 1)/9. Also called repunit primes or repdigit primes.
Original entry on oeis.org
11, 1111111111111111111, 11111111111111111111111
Offset: 1
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 11. Graham, Knuth and Patashnik, Concrete mathematics, Addison-Wesley, 1994; see p. 146, problem 22.
- M. Barsanti, R. Dvornicich, M. Forti, T. Franzoni, M. Gobbino, S. Mortola, L. Pernazza and R. Romito, Il Fibonacci N. 8 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 2004, Problem 8.10.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
- T. D. Noe, Table of n, a(n) for n = 1..5
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See p. 18.
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- D. H. Lehmer, On the number (10^23-1)/9, Bull. Amer. Math. Soc. 35 (1929), 349-350.
- James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019)
- Andy Steward, Prime Generalized Repunits
- S. S. Wagstaff, Jr., The Cunningham Project
- Index to entries for primes with digits in a given set.
-
[a: n in [0..300] | IsPrime(a) where a is (10^n - 1) div 9 ]; // Vincenzo Librandi, Nov 08 2014
-
lst={}; Do[If[PrimeQ[p = (10^n - 1)/9], AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *)
Select[Table[(10^n - 1) / 9, {n, 500}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *)
Select[Table[FromDigits[PadRight[{},n,1]],{n,30}],PrimeQ] (* Harvey P. Dale, Apr 07 2018 *)
-
forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1((10^x-1)/9","))) \\ Cino Hilliard, Dec 23 2008
-
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
yield from (t for t in (int("1"*k) for k in count(1)) if isprime(t))
print(list(islice(agen(), 4))) # Michael S. Branicky, Jun 09 2022
A003459
Absolute primes (or permutable primes): every permutation of the digits is a prime.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111
Offset: 1
- Richard C. Schroeppel, personal communication.
- Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 20-21.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
- I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977. [Related paper, but primarily concerned with A023107 and A103443. - _N. J. A. Sloane_, Jun 06 2015]
- T. N. Bhargava and P. H. Doyle, On the existence of absolute primes, Math. Mag., 47 (1974), 233.
- J. L. Boal and J. H. Bevis, Permutable primes. Math. Mag., 55 (No. 1, 1982), 38-41.
- C. Caldwell, The prime glossary: Permutable Prime.
- J. P. Delahaye, Persistent Primes, Illustrating Permutable, Circular, Right & Left Truncatable Primes, Pour La Science no 256.
- James Grime and Brady Haran, Absolute Primes, YouTube Numberphile video, 2024.
- A. W. Johnson, Absolute primes, Mathematics Magazine, 1977, vol. 50, pp. 100-103.
- R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- W. Schneider, MATHEWS, Circular, Permutable, Truncatable and Deletable Primes.
- A. Slinko, Absolute Primes Oct. 2000.
- A. Slinko, Absolute Primes, Oct. 2000 [Cached copy, permission requested].
- Wikipedia, Permutable prime.
- Index entries for sequences related to truncatable primes.
A258706 gives minimal representatives of the permutation classes.
-
import Data.List (permutations)
a003459 n = a003459_list !! (n-1)
a003459_list = filter isAbsPrime a000040_list where
isAbsPrime = all (== 1) . map (a010051 . read) . permutations . show
-- Reinhard Zumkeller, Sep 15 2011
-
f[n_]:=Module[{b=Permutations[IntegerDigits[n]],q=1},Do[If[!PrimeQ[c=FromDigits[b[[m]]]],q=0;Break[]],{m,Length[b]}];q];Select[Range[1000],f[#]>0&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2011 *)
(* Linear complexity: can't reach R(19). See A258706. - Bill Gosper, Jan 06 2017 *)
-
for(n=1, oo, my(S=[],r=10^n\9); for(a=1, 9^(n>1), for(b=if(n>2, 1-a), 9-a, for(j=0, if(b, n-1), ispseudoprime(a*r+b*10^j)||next(2)); S=concat(S,vector(if(b,n,1),k,a*r+10^(k-1)*b))));apply(t->printf(t","),Set(S))) \\ M. F. Hasler, Jun 26 2018
A077775
Odd numbers k such that (10^k - 1)/3 - 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime) of the form 3...313...3.
Original entry on oeis.org
3, 7, 15, 123, 181, 185, 539, 597, 643, 743, 1553, 3135, 4769, 5133, 6177, 11733, 16103, 18997, 25271, 49025, 65043, 87965
Offset: 1
a(3) = 15 corresponds to the prime (10^15 - 1)/3 - 2*10^7 = 333333313333333.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n - 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 49100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
is(n)=bittest(n,0)&&ispseudoprime(10^n\3-2*10^(n\2)) \\ M. F. Hasler, Mar 03 2019
A183187
Numbers k such that 10^(2k+1)-10^k-1 is prime.
Original entry on oeis.org
26, 378, 1246, 1798, 2917, 23034, 47509, 52140, 67404
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 10^n - 1], Print[n]], {n, 3000}]
-
for(n=1,1e3,if(ispseudoprime(10^(2*n+1)-10^n-1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
A115073
Numbers k such that 10^(2*k+1)-7*10^k-1 is prime.
Original entry on oeis.org
1, 8, 9, 352, 530, 697, 1315, 1918, 2874, 5876, 6768, 62938, 134739
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 7*10^n - 1], Print[n]], {n, 3000}]
-
for(n=0,1e4,if(ispseudoprime(t=10^(2*n+1)-7*10^n-1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107123
Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.
Original entry on oeis.org
0, 1, 2, 19, 97, 9818
Offset: 1
19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107127
Numbers n such that (10^(2n+1)+54*10^n-1)/9 is prime.
Original entry on oeis.org
0, 3, 33, 311, 2933, 22235, 39165, 41585
Offset: 1
3 is in the sequence because (10^(2*3+1)+54*10^3-1)/9=1(3).7.1(3)=1117111 is prime.
2933 is in the sequence because (10^(2*2933+1)+54*10^2933-1)/9=1(2933).7.1(2933) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 54*10^n - 1)/9], Print[n]], {n, 3250}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+54*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107648
Numbers n such that (10^(2n+1)+63*10^n-1)/9 is prime.
Original entry on oeis.org
1, 4, 6, 7, 384, 666, 675, 3165, 131020
Offset: 1
7 is in the sequence because (10^15+63*10^7-1)/9=1(7).8.1(7)=111111181111111 is prime.
666 is in the sequence because (10^(2*666+1)+63*10^666-1)/9=1(666).8.1(666) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 141.
-
Do[If[PrimeQ[(10^(2n + 1) + 63*10^n - 1)/9], Print[n]], {n, 4000}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+63*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107649
Numbers n such that (10^(2n+1)+72*10^n-1)/9 is prime.
Original entry on oeis.org
1, 4, 26, 187, 226, 874, 13309, 34016, 42589
Offset: 1
26 is in the sequence because (10^(2*26+1)+72*10^26-1)/9=1(26).9.1(26)
= 11111111111111111111111111911111111111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 72*10^n - 1)/9], Print[n]], {n, 3000}]
prQ[n_]:=Module[{c=PadRight[{},n,1]},PrimeQ[FromDigits[Join[c,{9},c]]]]; Select[Range[13500],prQ] (* Harvey P. Dale, Jan 19 2014 *)
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+72*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
Showing 1-10 of 154 results.
Comments