cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1190 results. Next

A056654 Numbers k such that 10*R_k + 3 is prime, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 23, 83, 220, 1313, 2951, 20015, 51053
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2000

Keywords

Comments

Also numbers k such that (10^(k+1)+17)/9 is prime.
a(14) > 10^5. - Robert Price, Nov 01 2014

Examples

			8 is a term because 111111113 is a prime.
		

Crossrefs

Cf. A093011 (corresponding primes), A097683.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 10*(10^n - 1)/9 + 3 ], Print[ n ] ], {n, 0, 1350} ]
  • PARI
    is(n)=ispseudoprime(10^n\9*10+3) \\ Charles R Greathouse IV, Nov 10 2021

Formula

a(n) = A097683(n+1) - 1. - Robert Price, Nov 01 2014

Extensions

a(11) (only a probable prime) from Rick L. Shepherd, Mar 14 2004
a(12)-a(13) derived from A097683 by Robert Price, Nov 01 2014

A242614 Triangle read by rows: row n contains numbers with sum of digits = n, and not greater than the n-th repunit (cf. A007953 and A002275).

Original entry on oeis.org

0, 1, 2, 11, 3, 12, 21, 30, 102, 111, 4, 13, 22, 31, 40, 103, 112, 121, 130, 202, 211, 220, 301, 310, 400, 1003, 1012, 1021, 1030, 1102, 1111, 5, 14, 23, 32, 41, 50, 104, 113, 122, 131, 140, 203, 212, 221, 230, 302, 311, 320, 401, 410, 500, 1004, 1013, 1022
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2014

Keywords

Comments

Number of terms in row n = A242622(n);
T(n,1) = A051885(n);
T(n,A242622(n)) = A002275(n);
for n > 0: number of repdigit terms in row n = A242627(n).

Examples

			The triangle begins:
. 0:  0
. 1:  1
. 2:  2,11
. 3:  3,12,21,30,102,111
. 4:  4,13,22,31,40,103,112,121,130,202, . . . ,1021,1030,1102,1111
. 5:  5,14,23,32,41,50,104,113,122,131, . . . ,11021,11030,11102,11111 .
		

Crossrefs

Programs

  • Haskell
    a242614 n k = a242614_row n !! (k-1)
    a242614_row n = filter ((== n) . a007953) [n .. a002275 n]
    a242614_tabf = map a242614_row [0..]
  • Mathematica
    Join[{0},Flatten[Table[Select[Range[FromDigits[PadRight[{},n,1]]], Total[ IntegerDigits[ #]] == n&],{n,5}]]] (* Harvey P. Dale, Oct 08 2019 *)

A003020 Largest prime factor of the "repunit" number 11...1 (cf. A002275).

Original entry on oeis.org

11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
Offset: 2

Views

Author

Keywords

Comments

a(n) = R_n iff n is a term of A004023. - Bernard Schott, Jul 07 2022

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 40.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Factors of the Repunits 11 through R_40, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1986, p. 219.

Crossrefs

Same as A005422 except for initial terms.
Smallest factor: A067063.

Programs

  • Mathematica
    Table[Max[Transpose[FactorInteger[10^i - 1]][[1]]], {i, 2, 25}]
    Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[-1,1]],{n,2,30}] (* Harvey P. Dale, Feb 01 2014 *)
  • PARI
    a(n)=local(p); if(n<2,n==1,p=factor((10^n-1)/9)~[1,]; p[length(p)])

Formula

a(n) = A006530(A002275(n)). - Ray Chandler, Apr 22 2017

Extensions

More terms from Harvey P. Dale, Jan 17 2001

A096508 Numbers k for which 8*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

2, 14, 17, 35, 4175, 4472, 9812, 12260, 12341, 13760, 14576, 53411, 144683, 148328
Offset: 1

Views

Author

Labos Elemer, Jul 12 2004

Keywords

Comments

Also numbers k such that (8*10^k + 1)/9 is prime.
a(15) > 2*10^5. - Robert Price, Sep 06 2014

Examples

			35 is a term because 88888888888888888888888888888888889 (34 8's) is a prime number.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime((8*10^n+1)/9), [$1..10000]); # Robert Israel, Sep 07 2014
  • Mathematica
    Do[ If[ PrimeQ[ 8(10^n - 1)/9 + 1], Print[n]], {n, 0, 30000}] (* Robert G. Wilson v, Oct 15 2004 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(8*(10^n-1)/9+1),print1(n,", "))) \\ Derek Orr, Sep 06 2014

Formula

a(n) = A056663(n) + 1.

Extensions

Four missing terms (9812, 12260, 12341, 13760) added, and a(12)-a(14) added from Kamada data, by Robert Price, Sep 06 2014

A095714 Numbers k such that 9*R_k - 8 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

3, 5, 7, 33, 45, 105, 197, 199, 281, 301, 317, 1107, 1657, 3395, 35925, 37597, 64305, 80139, 221631
Offset: 1

Views

Author

Alonso del Arte, Jul 07 2004

Keywords

Comments

Also numbers k such that 10^k - 9 is a prime.

Examples

			a(2) = 5, since 10^5 - 9 = 99991, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[10^n - 9], Print[n]], {n, 0, 7000}]

Formula

a(n) = A056696(n) + 1.

Extensions

a(12) - a(14) from Robert G. Wilson v, Oct 15 2004
a(15) - a(16) from Jason Earls, Jan 07 2008
a(17) - a(19) from Alexander Gramolin, May 13 2011
Edited by Ray Chandler, Feb 26 2012
Title corrected by Robert Price, Sep 06 2014

A102380 Irregular triangle read by rows in which row n lists prime factors (with multiplicity) of the repunit (10^n - 1)/9 (A002275(n)).

Original entry on oeis.org

1, 11, 3, 37, 11, 101, 41, 271, 3, 7, 11, 13, 37, 239, 4649, 11, 73, 101, 137, 3, 3, 37, 333667, 11, 41, 271, 9091, 21649, 513239, 3, 7, 11, 13, 37, 101, 9901, 53, 79, 265371653, 11, 239, 4649, 909091, 3, 31, 37, 41, 271, 2906161, 11, 17, 73, 101
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2006

Keywords

Comments

See A003020 for other links and references.

Examples

			First rows:
    1;
   11;
    3,   37;
   11,  101;
   41,  271;
    3,    7, 11, 13, 37;
  239, 4649;
  ...
		

Crossrefs

Programs

  • Maple
    [seq( ifactor((10^n-1)/9),n=1..20)];

Extensions

First 100 rows in b-file from T. D. Noe, Feb 27 2009
Rows n=101..322 in b-file from Ray Chandler, May 01 2017
Rows n=323..352 in b-file from Max Alekseyev, Apr 26 2022

A067063 Smallest prime factor of repunit(n) = (10^n-1)/9 (A002275).

Original entry on oeis.org

11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239
Offset: 2

Views

Author

Amarnath Murthy, Jan 03 2002

Keywords

Comments

a(n) = A003020(n) = R_(n) iff n is a term of A004023. - Bernard Schott, May 22 2022

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers.

Crossrefs

Largest factor: A003020.

Programs

  • Maple
    'min(op(numtheory[factorset]((10^k-1)/9)))'$k=2..50; # M. F. Hasler, Nov 21 2006
  • Mathematica
    a = {}; Do[a = Append[a, FactorInteger[(10^n - 1)/9][[1, 1]]], {n, 2, 111} ]; a
    Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[1,1]],{n,2,50}] (* Harvey P. Dale, Dec 10 2013 *)

Formula

a(3n) = 3, a(6n-4) = a(6n-2) = 11, a(30n-25) = a(30n-5) = 41, ... - M. F. Hasler, Nov 21 2006
a(n) = A020639(A002275(n)). - Ray Chandler, Apr 22 2017

Extensions

More terms from Robert G. Wilson v, Jan 04 2002

A096507 Numbers k such that 6*R_k + 1 is a prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 2, 6, 8, 9, 11, 20, 23, 41, 63, 66, 119, 122, 149, 252, 284, 305, 592, 746, 875, 1204, 1364, 2240, 2403, 5106, 5776, 5813, 12456, 14235, 39606, 55544, 84239, 275922
Offset: 1

Views

Author

Labos Elemer, Jul 12 2004

Keywords

Comments

Also numbers k such that (2*10^k + 1)/3 is prime.
These numbers form a near-repdigit sequence (6)w7.
All the terms from k = 2403 through 14235 correspond to primes. - Joao da Silva (zxawyh66(AT)yahoo.com), Oct 03 2005

Examples

			k = 9 gives 2000000001/3 = 666666667, which is prime.
k = 20 gives 66666666666666666667, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2500, PrimeQ[FromDigits@ Table[6, {#}] + 1] &] (* or *)
    Select[Range@ 2500, PrimeQ[2 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jul 04 2016 *)

Formula

a(n) = A056657(n) + 1.

Extensions

More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Sep 14 2004
39606 and 55544 from Serge Batalov, Jun 2009
84239 from Serge Batalov, Jul 06 2009 confirmed as next term by Ray Chandler, Feb 23 2012
a(33) from Kamada data by Tyler Busby, Apr 14 2024

A100706 Bisection of A002275.

Original entry on oeis.org

1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Comments

Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 151, 159, 183, 191, 215, 222, 223, 247, 254 and 255. - Robert Price, Feb 21 2016
The aerated sequence 1, 0, 111, 0, 11111, 0, 1111111, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = -9^2, Q = -10 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A299960. - Peter Bala, Aug 28 2019

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A002275, A099814 (other bisection), A007583, A095372, A299960.

Programs

  • Maple
    seq((10^(2*n+1) - 1)/9,n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
  • Mathematica
    Table[(10^(2*n + 1) - 1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
  • PARI
    a(n) = (10^(2*n + 1) - 1)/9; \\ Michel Marcus, Mar 12 2023
  • Python
    def A100706(n): return (10**((n<<1)+1)-1)//9 # Chai Wah Wu, Nov 04 2022
    

Formula

Numbers composed entirely of 2*n+1 concatenated 1's for n >= 0.
O.g.f.: (1+10*x)/((-1+x)*(-1+100*x)). - R. J. Mathar, Apr 03 2008
From Klaus Purath, Sep 23 2020: (Start)
a(n) = Sum_{i = 0..2*n} 10^i.
a(n) = 101*a(n-1) - 100*a(n-2).
a(n) = 110*10^(2*n-2) + a(n-1).
a(n) = 100*a(n-1) + 11.
a(n) = (a(n-1)^2 - 1210*10^(2*n-4))/a(n-2). (End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A272525 Convolution of nonzero repunits (A002275) with themselves.

Original entry on oeis.org

1, 22, 343, 4664, 58985, 713306, 8367627, 96021948, 1083676269, 12071330590, 133058984911, 1454046639232, 15775034293553, 170096021947874, 1824417009602195, 19478737997256516, 207133058984910837, 2194787379972565158, 23182441700960219479, 244170096021947873800
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2016

Keywords

Comments

Partial sums of A014925.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{22, -141, 220, -100}, {1, 22, 343, 4664}, 20]
    Table[(9 n (10^(n + 2) + 1) + 7 10^(n + 2) + 29)/729, {n, 0, 19}]
  • PARI
    A272525(n)=(9*n+7)*(10^(n+2)+1)\729+1 \\ M. F. Hasler, Nov 02 2016

Formula

O.g.f.: 1/((1 - 10*x)^2*(1 - x)^2).
E.g.f.: (29 + 9*x + 700*exp(9*x) + 9000*x*exp(9*x))*exp(x)/729.
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4).
a(n) = (9*n(10^(n+2) + 1) + 7*10^(n+2) + 29)/729.
A010879(a(n)) = A010879(n+1).
Showing 1-10 of 1190 results. Next