cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A087578 Duplicate of A023195.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 5113, 8011, 8191, 10303, 17293, 19531
Offset: 1

Views

Author

Keywords

A000668 Mersenne primes (primes of the form 2^n - 1).

Original entry on oeis.org

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Keywords

Comments

For a Mersenne number 2^n - 1 to be prime, the exponent n must itself be prime.
See A000043 for the values of n.
Primes that are repunits in base 2.
Define f(k) = 2k+1; begin with k = 2, a(n+1) = least prime of the form f(f(f(...(a(n))))). - Amarnath Murthy, Dec 26 2003
Mersenne primes other than the first are of the form 6n+1. - Lekraj Beedassy, Aug 27 2004. Mersenne primes other than the first are of the form 24n+7; see also A124477. - Artur Jasinski, Nov 25 2007
A034876(a(n)) = 0 and A034876(a(n)+1) = 1. - Jonathan Sondow, Dec 19 2004
Mersenne primes are solutions to sigma(n+1)-sigma(n) = n as perfect numbers (A000396(n)) are solutions to sigma(n) = 2n. In fact, appears to give all n such that sigma(n+1)-sigma(n) = n. - Benoit Cloitre, Aug 27 2002
If n is in the sequence then sigma(sigma(n)) = 2n+1. Is it true that this sequence gives all numbers n such that sigma(sigma(n)) = 2n+1? - Farideh Firoozbakht, Aug 19 2005
It is easily proved that if n is a Mersenne prime then sigma(sigma(n)) - sigma(n) = n. Is it true that Mersenne primes are all the solutions of the equation sigma(sigma(x)) - sigma(x) = x? - Farideh Firoozbakht, Feb 12 2008
Sum of divisors of n-th even superperfect number A061652(n). Sum of divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Indices of both triangular numbers and generalized hexagonal numbers (A000217) that are also even perfect numbers. - Omar E. Pol, May 10 2008, Sep 22 2013
Number of positive integers (1, 2, 3, ...) whose sum is the n-th perfect number A000396(n). - Omar E. Pol, May 10 2008
Vertex number where the n-th perfect number A000396(n) is located in the square spiral whose vertices are the positive triangular numbers A000217. - Omar E. Pol, May 10 2008
Mersenne numbers A000225 whose indices are the prime numbers A000043. - Omar E. Pol, Aug 31 2008
The digital roots are 1 if p == 1 (mod 6) and 4 if p == 5 (mod 6). [T. Koshy, Math Gaz. 89 (2005) p. 465]
Primes p such that for all primes q < p, p XOR q = p - q. - Brad Clardy, Oct 26 2011
All these primes, except 3, are Brazilian primes, so they are also in A085104 and A023195. - Bernard Schott, Dec 26 2012
All prime numbers p can be classified by k = (p mod 12) into four classes: k=1, 5, 7, 11. The Mersennne prime numbers 2^p-1, p > 2 are in the class k=7 with p=12*(n-1)+7, n=1,2,.... As all 2^p (p odd) are in class k=8 it follows that all 2^p-1, p > 2 are in class k=7. - Freimut Marschner, Jul 27 2013
From "The Guinness Book of Primes": "During the reign of Queen Elizabeth I, the largest known prime number was the number of grains of rice on the chessboard up to and including the nineteenth square: 524,287 [= 2^19 - 1]. By the time Lord Nelson was fighting the Battle of Trafalgar, the record for the largest prime had gone up to the thirty-first square of the chessboard: 2,147,483,647 [= 2^31 - 1]. This ten-digits number was proved to be prime in 1772 by the Swiss mathematician Leonard Euler, and it held the record until 1867." [du Sautoy] - Robert G. Wilson v, Nov 26 2013
If n is in the sequence then A024816(n) = antisigma(n) = antisigma(n+1) - 1. Is it true that this sequence gives all numbers n such that antisigma(n) = antisigma(n+1) - 1? Are there composite numbers with this property? - Jaroslav Krizek, Jan 24 2014
If n is in the sequence then phi(n) + sigma(sigma(n)) = 3n. Is it true that Mersenne primes are all the solutions of the equation phi(x) + sigma(sigma(x)) = 3x? - Farideh Firoozbakht, Sep 03 2014
a(5) = A229381(2) = 8191 is the "Simpsons' Mersenne prime". - Jonathan Sondow, Jan 02 2015
Equivalently, prime powers of the form 2^n - 1, see Theorem 2 in Lemos & Cambraia Junior. - Charles R Greathouse IV, Jul 07 2016
Primes whose sum of divisors is a power of 2. Primes p such that p + 1 is a power of 2. Primes in A046528. - Omar E. Pol, Jul 09 2016
From Jaroslav Krizek, Jan 19 2017: (Start)
Primes p such that sigma(p+1) = 2p+1.
Primes p such that A051027(p) = sigma(sigma(p)) = 2^k-1 for some k > 1.
Primes p of the form sigma(2^prime(n)-1)-1 for some n. Corresponding values of numbers n are in A016027.
Primes p of the form sigma(2^(n-1)) for some n > 1. Corresponding values of numbers n are in A000043 (Mersenne exponents).
Primes of the form sigma(2^(n+1)) for some n > 1. Corresponding values of numbers n are in A153798 (Mersenne exponents-2).
Primes p of the form sigma(n) where n is even; subsequence of A023195. Primes p of the form sigma(n) for some n. Conjecture: 31 is the only prime p such that p = sigma(x) = sigma(y) for distinct numbers x and y; 31 = sigma(16) = sigma(25).
Conjecture: numbers n such that n = sigma(sigma(n+1)-n-1)-1, i.e., A072868(n)-1.
Conjecture: primes of the form sigma(4*(n-1)) for some n. Corresponding values of numbers n are in A281312. (End)
[Conjecture] For n > 2, the Mersenne number M(n) = 2^n - 1 is a prime if and only if 3^M(n-1) == -1 (mod M(n)). - Thomas Ordowski, Aug 12 2018 [This needs proof! - Joerg Arndt, Mar 31 2019]
Named "Mersenne's numbers" by W. W. Rouse Ball (1892, 1912) after Marin Mersenne (1588-1648). - Amiram Eldar, Feb 20 2021
Theorem. Let b = 2^p - 1 (where p is a prime). Then b is a Mersenne prime iff (c = 2^p - 2 is totient or a term of A002202). Otherwise, if c is (nontotient or a term of A005277) then b is composite. Proof. Trivial, since, while b = v^g - 1 where v is even, v > 2, g is an integer, g > 1, b is always composite, and c = v^g - 2 is nontotient (or a term of A005277), and so is for any composite b = 2^g - 1 (in the last case, c = v^g - 2 is also nontotient, or a term of A005277). - Sergey Pavlov, Aug 30 2021 [Disclaimer: This proof has not been checked. - N. J. A. Sloane, Oct 01 2021]

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 135-136.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
  • Marcus P. F. du Sautoy, The Number Mysteries, A Mathematical Odyssey Through Everyday Life, Palgrave Macmillan, First published in 2010 by the Fourth Estate, an imprint of Harper Collins UK, 2011, p. 46. - Robert G. Wilson v, Nov 26 2013
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Bryant Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000225 (Mersenne numbers).
Cf. A000043 (Mersenne exponents).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • GAP
    A000668:=Filtered(List(Filtered([1..600], IsPrime),i->2^i-1),IsPrime); # Muniru A Asiru, Oct 01 2017
    
  • Maple
    A000668 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (isprime(i)) then
       return i
    fi: end:
    seq(A000668(n), n=1..31); # Jani Melik, Feb 09 2011
    # Alternate:
    seq(numtheory:-mersenne([i]),i=1..26); # Robert Israel, Jul 13 2014
  • Mathematica
    2^Array[MersennePrimeExponent, 18] - 1 (* Jean-François Alcover, Feb 17 2018, Mersenne primes with less than 1000 digits *)
    2^MersennePrimeExponent[Range[18]] - 1 (* Eric W. Weisstein, Sep 04 2021 *)
  • PARI
    forprime(p=2,1e5,if(ispseudoprime(2^p-1),print1(2^p-1", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043
    forprime(p=1, , if(LL(p), print1(p, ", "))) \\ Felix Fröhlich, Feb 17 2018
    
  • Python
    from sympy import isprime, primerange
    print([2**n-1 for n in primerange(1, 1001) if isprime(2**n-1)]) # Karl V. Keller, Jr., Jul 16 2020

Formula

a(n) = sigma(A061652(n)) = A000203(A061652(n)). - Omar E. Pol, Apr 15 2008
a(n) = sigma(A019279(n)) = A000203(A019279(n)), provided that there are no odd superperfect numbers. - Omar E. Pol, May 10 2008
a(n) = A000225(A000043(n)). - Omar E. Pol, Aug 31 2008
a(n) = 2^A000043(n) - 1 = 2^(A000005(A061652(n))) - 1. - Omar E. Pol, Oct 27 2011
a(n) = A000040(A059305(n)) = A001348(A016027(n)). - Omar E. Pol, Jun 29 2012
a(n) = A007947(A000396(n))/2, provided that there are no odd perfect numbers. - Omar E. Pol, Feb 01 2013
a(n) = 4*A134709(n) + 3. - Ivan N. Ianakiev, Sep 07 2013
a(n) = A003056(A000396(n)), provided that there are no odd perfect numbers. - Omar E. Pol, Dec 19 2016
Sum_{n>=1} 1/a(n) = A173898. - Amiram Eldar, Feb 20 2021

A023194 Numbers whose sum of divisors is prime.

Original entry on oeis.org

2, 4, 9, 16, 25, 64, 289, 729, 1681, 2401, 3481, 4096, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 65536, 83521, 85849, 146689, 262144, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281
Offset: 1

Views

Author

Keywords

Comments

All terms except the first are squares. Why? - Zak Seidov, Jun 10 2005
Answer from Gabe Cunningham (gcasey(AT)mit.edu): "From the fact that the sigma (the sum-of-divisors function) is multiplicative, we can derive that the sigma(n) is even except when n is a square or twice a square.
"If n = 2*(2*k + 1)^2, that is, n is twice an odd square, then sigma(n) = 3*sigma((2*k + 1)^2). If n = 2*(2*k)^2, that is, n is twice an even square, then sigma(n) is only prime if n is a power of 2; otherwise we have sigma(n) = sigma(8*2^m) * sigma(k/2^m) for some positive integer m.
"So the only possible candidates for values of n other than squares such that sigma(n) is prime are odd powers of 2. But sigma(2^(2*m + 1)) = 2^(2*m + 2) - 1 = (2^(m + 1) + 1) * (2^(m + 1) - 1), which is only prime when m = 0, that is, when n = 2. So 2 is the only nonsquare n such that sigma(n) is prime."
All terms in this sequence also have a prime number of divisors. - Howard Berman (howard_berman(AT)hotmail.com), Oct 29 2008
This is because 1 + p + ... + p^k is divisible by 1 + p + ... + p^j if k + 1 is divisible by j + 1. - Robert Israel, Jan 13 2015
From Gabe Cunningham's comment it follows that the alternate Mathematica program provided below is substantially more efficient as it only tests squares. - Harvey P. Dale, Dec 12 2010
Each term of this sequence is a prime power. This follows from the facts that sigma is multiplicative and sigma(n) > 1 for n > 1. Thus, for n > 1, a(n) is of the form a(n) = k^2 where k = p^m, with p prime, so the divisors of a(n) are {1, p, p^2, p^3, ..., (p^m)^2}, and this set is a multiplicative group (modulo q); if q is prime, q = sigma(k^2). Reciprocally, if q is a prime of the form 1 + p + p^2 + ... + p^(2*m), then q = sigma(p^(2*m)) (definition of sigma). - Michel Lagneau, Aug 17 2011, edited by Franklin T. Adams-Watters, Aug 17 2011
The sums of divisors of the even numbers in this sequence are the Mersenne primes, A000668. These even numbers are in A061652. - Hartmut F. W. Hoft, May 04 2015
Numbers of the form p^(q - 1), where p is a prime, such that (p^q - 1)/(p - 1) is a prime. Then q must be a prime that does not divide p - 1. - Thomas Ordowski, Nov 18 2017

Crossrefs

Cf. A000203.
Cf. A055638 (the square roots of the squares in this sequence).
Cf. A023195 (the primes produced by these n).

Programs

  • Magma
    [n: n in [1..2*10^6] | IsPrime(SumOfDivisors(n))]; // Vincenzo Librandi, May 05 2015
    
  • Maple
    N:= 10^8: # to get all entries <= N
    Primes:= select(isprime, [2,seq(2*i+1, i=1..floor((sqrt(N)-1)/2))]):
    P2:= select(t -> (t > 2 and t < 1 + ilog2(N)), Primes):
    cands:= {seq(seq([p,q],p=Primes), q=P2)} union {[2,2]}:
    f:= proc(pq) local t,j;
        t:= pq[1]^(pq[2]-1);
        if t <= N and isprime((t*pq[1]-1)/(pq[1]-1)) then t else NULL fi
    end proc:
    map(f,cands);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list));  # Robert Israel, Jan 13 2015
  • Mathematica
    Select[ Range[ 100000 ], PrimeQ[ DivisorSigma[ 1, # ] ]& ] (* David W. Wilson *)
    Prepend[Select[Range[1100]^2, PrimeQ[DivisorSigma[1,#]]&],2] (* Harvey P. Dale, Dec 12 2010 *)
  • PARI
    for(x=1,1000,if(isprime(sigma(x)),print(x))) /* Jorge Coveiro, Dec 23 2004 */
    
  • PARI
    list(lim)=my(v=List([2])); forprime(p=2,sqrtint(lim\=1), if(isprime(p^2+p+1), listput(v,p^2))); forstep(e=4,logint(lim,2),2, forprime(p=2,sqrtnint(lim,e), if(isprime((p^(e+1)-1)/(p-1)), listput(v,p^e)))); Set(v) \\ Charles R Greathouse IV, Aug 17 2011; updated Jul 22 2016
    
  • Python
    from sympy import isprime, divisor_sigma
    A023194_list = [2]+[n**2 for n in range(1,10**3) if isprime(divisor_sigma(n**2))] # Chai Wah Wu, Jul 14 2016

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A065764 Sum of divisors of square numbers.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Unlike A065765, the sums of divisors of squares give remainders r=1,3,5 modulo 6: sigma(4)==1, sigma(49)==3, sigma(2401)==5 (mod 6). See also A097022.
a(n) is also the number of ordered pairs of positive integers whose LCM is n, (see LeVeque). - Enrique Pérez Herrero, Aug 26 2013
Main diagonal of A319526. - Omar E. Pol, Sep 25 2018
Subsequence of primes is A023195 \ {3}; also, 31 is the only known prime to be twice in the data because 31 = sigma(16) = sigma(25) (see A119598 and Goormaghtigh conjecture link). - Bernard Schott, Jan 17 2021

References

  • W. J. LeVeque, Fundamentals of Number Theory, pp. 125 Problem 4, Dover NY 1996.

Crossrefs

Programs

  • GAP
    a:=List([1..50],n->Sigma(n^2));; Print(a); # Muniru A Asiru, Jan 01 2019
    
  • Magma
    [SumOfDivisors(n^2): n in [1..48]]; // Bruno Berselli, Apr 12 2011
    
  • Maple
    with(numtheory): [sigma(n^2)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[Plus@@Divisors[n^2], {n, 48}] (* Alonso del Arte, Feb 24 2012 *)
    f[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • MuPAD
    numlib::sigma(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n) = sigma(n^2); \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from math import prod
    from sympy import factorint
    def A065764(n): return prod((p**((e<<1)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
  • Sage
    [sigma(n^2,1)for n in range(1,49)] # Zerinvary Lajos, Jun 13 2009
    

Formula

a(n) = sigma(n^2) = A000203(A000290(n)).
Multiplicative with a(p^e) = (p^(2*e+1)-1)/(p-1). - Vladeta Jovovic, Dec 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/zeta(2*s-2), inverse Mobius transform of A000082. - R. J. Mathar, Mar 06 2011
Dirichlet convolution of A001157 by the absolute terms of A055615. Also the Dirichlet convolution of A048250 by A000290. - R. J. Mathar, Apr 12 2011
a(n) = Sum_{d|n} d*Psi(d), where Psi is A001615. - Enrique Pérez Herrero, Feb 25 2012
a(n) >= (n+1) * sigma(n) - n, where sigma is A000203, equality holds if n is in A000961. - Enrique Pérez Herrero, Apr 21 2012
Sum_{k=1..n} a(k) ~ 5*Zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = 1.3947708738535614499846243600124612760835313454790187655653356563282177118... - Vaclav Kotesovec, Sep 20 2020

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.

A062700 Terms of A000203 that are prime.

Original entry on oeis.org

3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 131071, 88741, 86143, 147073, 524287, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

Sorted and duplicates removed, this gives A023195.

Examples

			sigma(2) = 3, sigma(4) = 7, sigma(9) = 13 are the first three prime terms of A000203. Hence the sequence starts 3, 7, 13.
		

Crossrefs

Cf. A000203 (sigma(n), sum of divisors of n), A023194, A034885 (record values of sigma(n)), A023195 (prime numbers that are the sum of the divisors of some n), A100382 (record values of A062700).

Programs

  • Magma
    [ c: n in [1..1000000] | IsPrime(c) where c:=SumOfDivisors(n) ]; // Klaus Brockhaus, Oct 21 2009
    
  • Mathematica
    Select[DivisorSigma[1,Range[1000000]],PrimeQ] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    je=[]; for(n=1,1000000, if(isprime(sigma(n)),je=concat(je, sigma(n)))); je
    
  • PARI
    { n=0; for (m=1, 10^9, if(isprime(a=sigma(m)), write("b062700.txt", n++, " ", a); if (n==100, break)) ) } \\ Harry J. Smith, Aug 09 2009
    
  • Python
    from sympy import isprime, divisor_sigma
    A062700_list = [3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)] # Chai Wah Wu, Jul 23 2016

Formula

a(n) = A000203(A023194(n)). - Michel Marcus, Oct 19 2019

Extensions

Edited by Klaus Brockhaus, Oct 21 2009

A055638 Numbers k for which sigma(k^2) is prime.

Original entry on oeis.org

2, 3, 4, 5, 8, 17, 27, 41, 49, 59, 64, 71, 89, 101, 125, 131, 167, 169, 173, 256, 289, 293, 383, 512, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931
Offset: 1

Views

Author

Robert G. Wilson v, Jun 07 2000

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).
If sigma(x) is prime, then x=2 or x=p^(2m), an even power of a prime, cf. A023194. This sequence lists the values n = p^m such that sigma(n^2) is prime, i.e., sqrt( A023194 \ {2} ). The corresponding primes sigma(n^2)=A062700(n) are 1+p+...+p^(2m) = (p^(2m+1)-1)/(p-1), and any prime of that form (cf. A023195) corresponds to a term p^m is in this sequence. - M. F. Hasler, Oct 14 2014
This is a subsequence of A000961, see A248963 for its complement therein. - M. F. Hasler, Oct 19 2014
a(n) nearly always has digitsum of the form 2 mod 3. Specifically, 99.8% of the first 33733 entries examined conformed. The first exceptions are 3, 4, 27, 49, 64, 169, 256, 289, 529, 729. The exceptions (examined) appear to be integer powers themselves excepting the initial 3. Similarly, except for the initial 3, all entries of A023195 appear to have digitsum = 1 mod 3. - Bill McEachen, Mar 05 2017, Mar 20 2025
Number of terms < 10^k: 5, 13, 36, 137, 735, 4730, 33732, 253393, ..., . Robert G. Wilson v, Mar 09 2017
Primes in the sequence are A053182. - Thomas Ordowski, Nov 18 2017

Crossrefs

Cf. A023194 (sigma(n) is prime).
Cf. A023195 (primes of the form sigma(n)), A062700 (in order of appearance).

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(SumOfDivisors(n^2))]; // Vincenzo Librandi, Oct 18 2014
  • Mathematica
    Select[Range[2000], PrimeQ[DivisorSigma[1, #^2]] &]
  • PARI
    for(n=1,9999,isprime(sigma(n^2))&&print1(n",")) \\ M. F. Hasler, Oct 18 2014
    

Formula

a(n) = sqrt(A023194(n+1)).
Equal to A000961 \ A248963. - M. F. Hasler, Oct 19 2014

Extensions

Minor edits by M. F. Hasler, Oct 18 2014

A253850 Mersenne exponents (A000043) that are the sum of the divisors (A000203) of some n.

Original entry on oeis.org

3, 7, 13, 31, 127
Offset: 1

Views

Author

Jaroslav Krizek, Jan 16 2015

Keywords

Comments

Also primes p that are the sum of the divisors of some n where 2^sigma(n) - 1 is a Mersenne prime (A000668).
Intersection of A023195 and A000043.
If a(6) exists, it must be greater than A000043(48) = 57885161, and also not equal to any of the Mersenne prime exponents 74207281, 77232917, 82589933, 136279841. - Gord Palameta, Oct 22 2024

Examples

			Mersenne exponent 7 is in the sequence because sigma(4) = 7.
Mersenne exponent 31 is in the sequence because there are two numbers n (16 and 25) with sigma(n) = 31.
		

Crossrefs

Programs

  • Magma
    Set(Sort([SumOfDivisors(n): n in[1..10000] | IsPrime((2^SumOfDivisors(n))- 1)]));

A253851 Mersenne primes (A000668) of the form 2^sigma(n) - 1 for some n.

Original entry on oeis.org

7, 127, 8191, 2147483647, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Jaroslav Krizek, Jan 16 2015

Keywords

Comments

Numbers n such that 2^sigma(n) - 1 is a Mersenne primes are given in A253849.
Sequence of corresponding values of sigma(n) are given in A253850 and each term of this sequence must be a prime from the sequence of Mersenne exponents (A000043).
If a(6) exists, it must be bigger than A000668(43) = 2^30402457-1.

Examples

			Mersenne prime 2147483647 is in the sequence because there are two numbers n (16 and 25) with 2^sigma(n) - 1 = 2^31 - 1 = 2147483647.
		

Crossrefs

Programs

  • Magma
    Set(Sort([(2^SumOfDivisors(n))-1: n in[1..10000] | IsPrime((2^SumOfDivisors(n))-1)]));
Showing 1-10 of 28 results. Next