cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A100382 Record values of A062700.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 10303, 19531, 28057, 30941, 131071, 147073, 524287, 797161, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757, 2212657, 2432041, 2507473, 2922391
Offset: 1

Views

Author

Jorge Coveiro, Dec 30 2004

Keywords

Comments

Take sequence A062700: 3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, .... Then eliminate terms so that each term of the sequence is larger than the preceding one: 3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 10303, ....

Crossrefs

Cf. A062700 (terms of A000203 that are prime), A000203 (sigma(n), sum of divisors of n), A034885 (record values of sigma(n)).

Programs

  • Magma
    S:=[]; a:=0; for n in [1..3000000] do c:=SumOfDivisors(n); if IsPrime(c) and a lt c then Append(~S,c); a:=c; end if; end for; S; // Klaus Brockhaus, Oct 21 2009

Extensions

More terms from Ryan Propper, Jul 13 2005
Edited, corrected and extended by Klaus Brockhaus, Oct 21 2009

A071167 a(n) = A023194 - A062700(n). Negative values of A071166(m) = m-A006530(A000203(m)) differences. In these cases m is square number from A023194.

Original entry on oeis.org

-1, -3, -4, -15, -6, -63, -18, -364, -42, -400, -60, -4095, -72, -90, -102, -3906, -132, -168, -2380, -174, -65535, -5220, -294, -384, -262143, -12720, -678, -702, -265720, -744, -762, -774, -828, -840, -25260, -858, -912, -1092, -1098, -1164, -1182, -1194, -1218, -1374, -1428, -1488, -1560
Offset: 1

Views

Author

Labos Elemer, May 15 2002

Keywords

Examples

			m=29929=173, sigma[29929]=1+173+29929=30103 and 29929-30103=-174, the 20th term here.
		

Crossrefs

Programs

  • Mathematica
    ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=n-ma[DivisorSigma[1, n]]; If[Equal[Sign[s], -1], Print[s]], {n, 2, 10000000}]
  • PARI
    for(n=1,1e3,if(isprime(s=sigma(n^2)),print1(n^2-s", "))) \\ Charles R Greathouse IV, Feb 19 2013

Formula

Values of m - A006530(A000203(m)) differences, when m < A006530(A000203(m)).

A055638 Numbers k for which sigma(k^2) is prime.

Original entry on oeis.org

2, 3, 4, 5, 8, 17, 27, 41, 49, 59, 64, 71, 89, 101, 125, 131, 167, 169, 173, 256, 289, 293, 383, 512, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931
Offset: 1

Views

Author

Robert G. Wilson v, Jun 07 2000

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).
If sigma(x) is prime, then x=2 or x=p^(2m), an even power of a prime, cf. A023194. This sequence lists the values n = p^m such that sigma(n^2) is prime, i.e., sqrt( A023194 \ {2} ). The corresponding primes sigma(n^2)=A062700(n) are 1+p+...+p^(2m) = (p^(2m+1)-1)/(p-1), and any prime of that form (cf. A023195) corresponds to a term p^m is in this sequence. - M. F. Hasler, Oct 14 2014
This is a subsequence of A000961, see A248963 for its complement therein. - M. F. Hasler, Oct 19 2014
a(n) nearly always has digitsum of the form 2 mod 3. Specifically, 99.8% of the first 33733 entries examined conformed. The first exceptions are 3, 4, 27, 49, 64, 169, 256, 289, 529, 729. The exceptions (examined) appear to be integer powers themselves excepting the initial 3. Similarly, except for the initial 3, all entries of A023195 appear to have digitsum = 1 mod 3. - Bill McEachen, Mar 05 2017, Mar 20 2025
Number of terms < 10^k: 5, 13, 36, 137, 735, 4730, 33732, 253393, ..., . Robert G. Wilson v, Mar 09 2017
Primes in the sequence are A053182. - Thomas Ordowski, Nov 18 2017

Crossrefs

Cf. A023194 (sigma(n) is prime).
Cf. A023195 (primes of the form sigma(n)), A062700 (in order of appearance).

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(SumOfDivisors(n^2))]; // Vincenzo Librandi, Oct 18 2014
  • Mathematica
    Select[Range[2000], PrimeQ[DivisorSigma[1, #^2]] &]
  • PARI
    for(n=1,9999,isprime(sigma(n^2))&&print1(n",")) \\ M. F. Hasler, Oct 18 2014
    

Formula

a(n) = sqrt(A023194(n+1)).
Equal to A000961 \ A248963. - M. F. Hasler, Oct 19 2014

Extensions

Minor edits by M. F. Hasler, Oct 18 2014

A065403 Primes of the form sigma(m^2) where m is a composite number ordered by values m.

Original entry on oeis.org

31, 127, 1093, 2801, 8191, 19531, 30941, 131071, 88741, 524287, 292561, 797161, 732541, 3500201, 5229043, 12207031, 25646167, 28792661, 39449441, 48037081, 305175781, 262209281, 917087137, 2147483647, 1394714501, 2666986681
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

There are 46 cases below 10^12.
All Mersenne primes are here: sigma((2^((p-1)/2))^2) = sigma(2^(p-1)) = -1 + 2^p, for suitable p.
m is of the form p^(2*e) for some prime p and e > 1 as sigma is multiplicative and m is composite. Terms are sorted by values of m. The sequence isn't monotonic. - David A. Corneth, Jul 18 2020

Examples

			19531 is in the sequence as for the composite m = 125 we have sigma(m^2) = 19531. - _David A. Corneth_, Jul 18 2020
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]; If[PrimeQ[s]&&!PrimeQ[Sqrt[n]], Print[{n, Sqrt[n], s}]], {n, 1, 20000000}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065403.txt", n++, " ", x); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009
    
  • PARI
    upto(n) = {res = List(); forstep(e = 4, logint(n, 2), 2, forprime(p = 2, sqrtnint(n, e), c = (p^(e + 1) - 1)/(p - 1); if(isprime(c), listput(res, [p^e, c]) ) ) ); listsort(res); vector(#res, i, res[i][2]) } \\ David A. Corneth, Jul 18 2020

Extensions

Name corrected by David A. Corneth, Jul 18 2020

A065405 Composite numbers k such that the sum of the divisors of k^2 is a prime.

Original entry on oeis.org

4, 8, 27, 49, 64, 125, 169, 256, 289, 512, 529, 729, 841, 1849, 2197, 3125, 4913, 5329, 6241, 6889, 15625, 16129, 29791, 32768, 37249, 51529, 57121, 69169, 76729, 113569, 117649, 128881, 139129, 157609, 192721, 208849, 226981, 229441, 253009
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

All these composite numbers k should be prime powers because if k=a*b with gcd(a,b)=1, then sigma(aabb) = sigma(aa)*sigma(bb) cannot be a prime; 46 of the 236 prime powers below 1000000 are here.

Crossrefs

Programs

  • Mathematica
    Select[ Range[3 10^5], ! PrimeQ[ # ] && PrimeQ[ DivisorSigma[1, #^2]] & ]
  • PARI
    isok(k) = { !isprime(k) && isprime(sigma(k^2)) } \\ Harry J. Smith, Oct 18 2009

Formula

sigma(a(n)^2) = sigma(A065404(n)) = A065403(n) is prime.

A065404 Squares of composite numbers k such that sigma(k) (sum of divisors of k, A000203) is a prime.

Original entry on oeis.org

16, 64, 729, 2401, 4096, 15625, 28561, 65536, 83521, 262144, 279841, 531441, 707281, 3418801, 4826809, 9765625, 24137569, 28398241, 38950081, 47458321, 244140625, 260144641, 887503681, 1073741824, 1387488001, 2655237841
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Examples

			46 cases below 10^12; for M a Mersenne prime, (M+1)/2 is here: M=8191, 4096=(M+1)/2.
		

Crossrefs

Programs

  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065404.txt", n++, " ", m^2); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009

Formula

sigma(a(n)) = A065403(n).

A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions.

Original entry on oeis.org

1, 3, 7, 15, 13, 31, 39, 31, 63, 91, 57, 93, 127, 195, 121, 171, 217, 133, 255, 403, 363, 183, 399, 465, 403, 399, 511, 819, 307, 847, 549, 381, 855, 961, 741, 1209, 931, 1023, 553, 1651, 921, 781, 1815, 1281, 1143, 1093, 1767, 1953, 871, 2223, 2821, 993, 1995
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2008

Keywords

Comments

Equivalently: subsequence of A000203 (sigma) with indices equal to a square or twice a square (A028982).
See A060657 for the set of odd values in the range of the sigma function, i.e., the list of odd values in ordered by increasing size and without repetitions.

Crossrefs

Cf. A000203 (sigma = sum-of-divisors function), A152678 (even terms in A000203), A028982 (squares and twice the squares).
See A062700 and A023195 for the subsequence resp. subset of primes; A023194 for the indices of A000203 which yield these primes.
Cf. A002117.

Programs

  • Magma
    [d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1,k)]; // Marius A. Burtea, Jan 09 2020
  • Mathematica
    Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* Giovanni Resta, Jan 08 2020 *)
    With[{max = 1000}, DivisorSigma[1, Union[Range[Sqrt[max]]^2, 2*Range[Sqrt[max/2]]^2]]] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    A152677_upto(lim)=apply(sigma,vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - Charles R Greathouse IV, Feb 15 2013, corrected by M. F. Hasler, Jan 08 2020
    

Formula

a(n) = A000203(A028982(n)). - R. J. Mathar, Dec 12 2008
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16-10*sqrt(2))*zeta(3)/Pi^2 = 0.226276... . - Amiram Eldar, Nov 28 2023

Extensions

Extended by R. J. Mathar, Dec 12 2008
Edited and definition reworded by M. F. Hasler, Jan 08 2020

A065061 Numbers k such that sigma(k) - tau(k) is a prime.

Original entry on oeis.org

3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
Offset: 1

Views

Author

Jason Earls, Nov 06 2001

Keywords

Comments

From Kevin P. Thompson, Jun 20 2022: (Start)
Terms greater than 3 must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205).
(End)

Examples

			162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 3
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022

A229264 Primes in A065387 in the order of their appearance.

Original entry on oeis.org

2, 19, 19, 79, 103, 113, 257, 523, 509, 1151, 1279, 1193, 1579, 2273, 3061, 2389, 2693, 2843, 5003, 4831, 5119, 7411, 5693, 5623, 8623, 6323, 10139, 8933, 18401, 14957, 20411, 20479, 21191, 20123, 29683, 28211, 36833, 55021, 57203, 68743, 48761, 66533, 62423
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Third term of A038344 is 9 and sigma(9) + phi(9) = 13 + 6 = 19 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[1,n]+EulerPhi[n],{n,30000}],PrimeQ] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    lista(kmax) = {my(f, s); for(k = 1, kmax, f = factor(k); s= sigma(f) + eulerphi(f); if(isprime(s), print1(s, ", ")));} \\ Amiram Eldar, Nov 19 2024

Extensions

Name corrected by Amiram Eldar, Nov 19 2024

A229268 Primes of the form sigma(k) - tau(k), where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

2, 11, 353, 1013, 2333, 16369, 58579, 65519, 123733, 1982273, 7089683, 5778653, 12795053, 10500593, 22586027, 19980143, 24126653, 67108837, 72494713, 90781993, 106199593, 203275951, 164118923, 183105421, 320210549, 259997173, 794091653, 1279963973
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Second term of A065061 is 8 and sigma(8) - tau(8) = 15 - 4 = 11 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n; a:= sigma(n)-tau(n); for n from 1 to q do
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Join[{2}, Select[(DivisorSigma[1, #] - DivisorSigma[0, #]) & /@ (2*Range[20000]^2), PrimeQ]] (* Amiram Eldar, Dec 06 2022 *)

Formula

a(n) = A000203(A065061(n)) - A000005(A065061(n)). - Michel Marcus, Sep 21 2013
a(n) = A065608(A065061(n)). - Amiram Eldar, Dec 06 2022

Extensions

More terms from Michel Marcus, Sep 21 2013
Showing 1-10 of 18 results. Next