cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064205 Numbers k such that sigma(k) + tau(k) is a prime.

Original entry on oeis.org

1, 2, 8, 128, 162, 512, 32768, 41472, 101250, 125000, 1414562, 3748322, 5120000, 6837602, 8000000, 13530402, 24234722, 35701250, 66724352, 75031250, 78125000, 86093442, 91125000, 171532242, 177058562, 226759808, 233971712, 617831552, 664301250, 686128968
Offset: 1

Views

Author

Jason Earls, Sep 21 2001

Keywords

Comments

The terms involve powers of small primes. - Jud McCranie, Nov 29 2001
From Kevin P. Thompson, Jun 20 2022: (Start)
Theorem: Terms that are greater than one must be twice a square.
Proof: Since sigma(k) is odd if and only if k is a square or twice a square, and tau(k) is odd if and only if k is a square, then an odd sum only occurs when k is twice a square, in which case sigma(k) is odd and tau(k) is even. So, these are the only candidates for sigma(k) + tau(k) being prime.
Theorem: No terms are congruent to 4 or 6 (mod 10).
Proof: Since no square ends in 2, 3, 7, or 8, and each term > 1 is twice a square, no term ends in 4 or 6. (End)

Examples

			128 is a term since sigma(128) + tau(128) = 255 + 8 = 263, which is prime.
		

Crossrefs

Cf. A007503 (sigma+tau), A065061, A055813.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] + DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) + numdiv(m)), write("b064205.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 10 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 1
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)+t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

More terms from Robert G. Wilson v, Nov 12 2001
More terms from Labos Elemer, Nov 22 2001
More terms from Jud McCranie, Nov 29 2001
a(28) from Harry J. Smith, Sep 10 2009

A229268 Primes of the form sigma(k) - tau(k), where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

2, 11, 353, 1013, 2333, 16369, 58579, 65519, 123733, 1982273, 7089683, 5778653, 12795053, 10500593, 22586027, 19980143, 24126653, 67108837, 72494713, 90781993, 106199593, 203275951, 164118923, 183105421, 320210549, 259997173, 794091653, 1279963973
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Second term of A065061 is 8 and sigma(8) - tau(8) = 15 - 4 = 11 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n; a:= sigma(n)-tau(n); for n from 1 to q do
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Join[{2}, Select[(DivisorSigma[1, #] - DivisorSigma[0, #]) & /@ (2*Range[20000]^2), PrimeQ]] (* Amiram Eldar, Dec 06 2022 *)

Formula

a(n) = A000203(A065061(n)) - A000005(A065061(n)). - Michel Marcus, Sep 21 2013
a(n) = A065608(A065061(n)). - Amiram Eldar, Dec 06 2022

Extensions

More terms from Michel Marcus, Sep 21 2013

A229266 Primes of the form sigma(k) + tau(k) + phi(k), where sigma(k) = A000203(k), tau(k) = A000005(k) and phi(k) = A000010(k).

Original entry on oeis.org

3, 23, 557, 1289, 2447, 3779, 9209, 10331, 11351, 18367, 14051, 34351, 42953, 67883, 95717, 96587, 134807, 164249, 193057, 310553, 253159, 321397, 383723, 548213, 657311, 499151, 630023, 516251, 732181, 713927, 927013, 932431, 784627, 906473, 855331, 1121987
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			The third term of A229265 is 200 and sigma(200) +  tau(200) + phi(200) = 465 + 12 + 80 = 557 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+tau(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[0,n]+DivisorSigma[1,n]+EulerPhi[n],{n,10^6}],PrimeQ] (* Harvey P. Dale, Oct 03 2023 *)

A065116 Numbers k such that sigma(k) + tau(k) and sigma(k) - tau(k) are primes.

Original entry on oeis.org

8, 162, 512, 32768, 41472, 3748322, 5120000, 6837602, 8000000, 35701250, 75031250, 78125000, 91125000, 907039232, 10660336128, 11911961250, 21234895362, 41265473762, 55965865922, 209642370242, 835707290112, 1148179179938, 1821331173888, 2097152000000
Offset: 1

Views

Author

Robert G. Wilson v, Nov 12 2001

Keywords

Comments

Intersection of A064205 and A065061.
From Kevin P. Thompson, Jun 20 2022: (Start)
Terms must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205). (End)

Examples

			162 is a term since sigma(162) = 363 and tau(162) = 10 are numbers whose sum (373) and difference (353) are both primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ds1 = DivisorSigma[1, n]; ds0 = DivisorSigma[0, n]; If[ PrimeQ[ds1 + ds0] && PrimeQ[ds1 - ds0], Print[n]], {n, 1, 10^7} ]

Extensions

a(10)-a(19) from Donovan Johnson, Jul 09 2010
a(20)-a(24) from Donovan Johnson, Aug 23 2013
Showing 1-4 of 4 results.