cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A065773 Number of divisors of square of true prime powers arising in A065405.

Original entry on oeis.org

5, 7, 7, 5, 13, 7, 5, 17, 5, 19, 5, 13, 5, 5, 7, 11, 7, 5, 5, 5, 13, 5, 7, 31, 5, 5, 5, 5, 5, 5, 13, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 7, 7, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Nov 19 2001

Keywords

Examples

			For k = 3125, tau(k^2) = 11, sigma(k^2) = 12207031 = (5^(tau(k^2)) - 1)/4 = A065403(16) is also a prime.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[10^5], ! PrimeQ[#] && PrimeQ[DivisorSigma[1, #^2]] &]^2] (* Amiram Eldar, Jan 31 2025 *)
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), a=numdiv(m^2); write("b065773.txt", n++, " ", a); if (n==100, return)) ) } \\ Harry J. Smith, Oct 30 2009

Formula

a(n) = A000005(A065405(n)^2).
If A065405(n) = q^c, a prime-power, then sigma(q^(2c)) = A000203(q^(2c)) = (-1 + q^(2c+1))/(q-1) = (-1 + q^A000005(A065405(n)^2))/(q-1) also a prime, from A065403.

A065403 Primes of the form sigma(m^2) where m is a composite number ordered by values m.

Original entry on oeis.org

31, 127, 1093, 2801, 8191, 19531, 30941, 131071, 88741, 524287, 292561, 797161, 732541, 3500201, 5229043, 12207031, 25646167, 28792661, 39449441, 48037081, 305175781, 262209281, 917087137, 2147483647, 1394714501, 2666986681
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

There are 46 cases below 10^12.
All Mersenne primes are here: sigma((2^((p-1)/2))^2) = sigma(2^(p-1)) = -1 + 2^p, for suitable p.
m is of the form p^(2*e) for some prime p and e > 1 as sigma is multiplicative and m is composite. Terms are sorted by values of m. The sequence isn't monotonic. - David A. Corneth, Jul 18 2020

Examples

			19531 is in the sequence as for the composite m = 125 we have sigma(m^2) = 19531. - _David A. Corneth_, Jul 18 2020
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]; If[PrimeQ[s]&&!PrimeQ[Sqrt[n]], Print[{n, Sqrt[n], s}]], {n, 1, 20000000}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065403.txt", n++, " ", x); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009
    
  • PARI
    upto(n) = {res = List(); forstep(e = 4, logint(n, 2), 2, forprime(p = 2, sqrtnint(n, e), c = (p^(e + 1) - 1)/(p - 1); if(isprime(c), listput(res, [p^e, c]) ) ) ); listsort(res); vector(#res, i, res[i][2]) } \\ David A. Corneth, Jul 18 2020

Extensions

Name corrected by David A. Corneth, Jul 18 2020

A065404 Squares of composite numbers k such that sigma(k) (sum of divisors of k, A000203) is a prime.

Original entry on oeis.org

16, 64, 729, 2401, 4096, 15625, 28561, 65536, 83521, 262144, 279841, 531441, 707281, 3418801, 4826809, 9765625, 24137569, 28398241, 38950081, 47458321, 244140625, 260144641, 887503681, 1073741824, 1387488001, 2655237841
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Examples

			46 cases below 10^12; for M a Mersenne prime, (M+1)/2 is here: M=8191, 4096=(M+1)/2.
		

Crossrefs

Programs

  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065404.txt", n++, " ", m^2); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009

Formula

sigma(a(n)) = A065403(n).

A065549 a(1) = 1; for n > 1, a(n) = 2^((A000043(n) - 1)/2).

Original entry on oeis.org

2, 4, 8, 64, 256, 512, 32768, 1073741824, 17592186044416, 9007199254740992, 9223372036854775808, 1852673427797059126777135760139006525652319754650249024631321344126610074238976
Offset: 2

Views

Author

Labos Elemer, Nov 13 2001

Keywords

Comments

Proper subset of A065405.
These values also relate to the sequence of perfect numbers. Every even perfect number except 6 can be written as Sum_{k=1..a(n)} (2*k-1)^3. - Derek Orr, Sep 28 2013
Positive real roots of 2n^4 - n^2 - A000396(n) = 0 for A000396(n) > 6. - César Aguilera, Nov 11 2018

Crossrefs

Programs

  • Mathematica
    Array[2^((MersennePrimeExponent@ # - 1)/2) &, 12, 2] (* Michael De Vlieger, Aug 25 2018 *)
  • PARI
    lista(nn) = {forprime(p=3, nn, if (isprime(2^p-1), print1(2^((p-1)/2), ", ")););} \\ Michel Marcus, Aug 04 2016

Formula

log(n) is approximately log(sqrt(A000668(n)/2)). - César Aguilera, Nov 11 2018

A065771 Prime powers n such that both tau(n^2) and sigma(n^2) are composite numbers.

Original entry on oeis.org

16, 81, 128, 625, 1024, 2187, 2401, 4096, 8192, 14641, 28561, 59049, 65536, 78125, 83521, 130321, 131072, 279841, 524288, 531441, 707281, 823543, 923521, 1594323, 1874161, 2825761, 3418801, 4194304, 4879681, 7890481, 9765625, 12117361, 13845841, 16777216
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ s=DivisorSigma[ 0, n^2 ]; y=DivisorSigma[ 1, n^2 ]; If[ Equal[ Length[ FactorInteger[ n ] ], 1 ]&&!PrimeQ[ n ] &&!PrimeQ[ s ]&&!PrimeQ[ y ], Print[ n ] ], {n, 1, 10000000} ]
    Select[Range[16778000],PrimePowerQ[#]&&AllTrue[{DivisorSigma[ 0,#^2],DivisorSigma[ 1,#^2]},CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 18 2021 *)

Formula

A000005(A025475(n)^2) and A000203(A025475(n)^2) are composite numbers.

A065772 Nontrivial prime powers k from A025475 such that tau(k^2) is prime but sigma(k^2) is a composite number.

Original entry on oeis.org

9, 25, 32, 121, 243, 343, 361, 961, 1331, 1369, 1681, 2048, 2209, 2809, 3481, 3721, 4489, 5041, 6561, 6859, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16384, 16807, 17161, 18769, 19321, 19683, 22201, 22801, 24389, 24649, 26569
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Numbers k = A025475(m) such that A000005(k^2) is prime but A000203(k^2) is composite number.

Examples

			For k = 32: k^2 = 1024, tau(1024) = 11, sigma(1024) = 2047 = 23*89.
For k = 243, k^2 = 59049, tau(59049) = 11, sigma(59049) = 88573 = 23*3851.
Up to 10000000, 453 terms were found.
		

Crossrefs

Programs

  • Mathematica
    Do[ s=DivisorSigma[ 0, n^2 ]; y=DivisorSigma[ 1, n^2 ]; If[ Equal[ Length[ FactorInteger[ n ] ], 1 ]&&!PrimeQ[ n ] &&PrimeQ[ s ]&&!PrimeQ[ y ], Print[ n ] ], {n, 1, 10000000} ]

A065813 Least m such that (p^(2*m+1)-1)/(p-1) is a prime, where p = prime(n).

Original entry on oeis.org

1, 1, 1, 2, 8, 2, 1, 9, 2, 2, 3, 6, 1, 2, 63, 5, 1, 3, 9, 1, 2, 2, 2, 1, 8, 1, 9, 8, 8, 11, 2, 1, 5, 81, 3, 6, 8, 3, 1, 1, 9, 8, 8, 2, 15, 288, 20, 119, 2, 5, 56, 2, 8, 3, 11, 2
Offset: 1

Views

Author

Vladeta Jovovic and Labos Elemer, Nov 13 2001

Keywords

Examples

			a(5) = 8 because ithprime(5) = 11, (11^(2*m+1)-1)/10 is not a prime for m = 1..7 and (11^17-1)/10 = 50544702849929377 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[w]; s=DivisorSigma[1, (p^r)^2]; z=DivisorSigma[0, (p^r)^2]; If[PrimeQ[s], Print[{p, r, p^r, s, z}]], {w, 1, 100}, {r, 1, 100}] For w=12, this prints out first {37, 6, 2565726409, 6765811783780036261, 13}.
    lm[n_]:=Module[{m=1},While[!PrimeQ[(n^(2m+1)-1)/(n-1)],m++];m]; lm/@Prime[ Range[ 56]] (* Harvey P. Dale, Feb 16 2014 *)
  • PARI
    { allocatemem(932245000); for (n=1, 100, x=prime(n); s=x^2; q=x - 1; m=1; while (!isprime(((x*=s) - 1)/q), m++); write("b065813.txt", n, " ", m) ) } \\ Harry J. Smith, Oct 31 2009

A065746 Number of divisors of squares of all true powers of primes: a(n) = A000005(A025475(n+1)^2).

Original entry on oeis.org

5, 7, 5, 9, 5, 7, 11, 5, 13, 9, 5, 7, 15, 5, 11, 17, 5, 7, 5, 19, 5, 9, 13, 5, 5, 21, 7, 5, 5, 5, 23, 15, 7, 5, 9, 5, 11, 5, 5, 25, 5, 7, 5, 5, 5, 17, 7, 5, 5, 27, 5, 5, 5, 5, 5, 7, 5, 9, 13, 5, 29, 11, 5, 5, 5, 19, 5, 5, 7, 5, 5, 5, 9, 7, 5, 5, 5, 31, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 21, 5, 33
Offset: 1

Views

Author

Labos Elemer, Nov 16 2001

Keywords

Examples

			tau(p^(2c)) = 2c+1 is prime if c = (odd prime -1)/2 = 1, 2, 3, 5, 6, 8, ... = A005097.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[60000], ! PrimeQ[#] && PrimePowerQ[#] &]^2] (* Amiram Eldar, Apr 13 2024 *)

Formula

tau(p^(2c)), where tau is the number of divisors, c > 1 and p is prime.

Extensions

Name corrected by Amiram Eldar, Apr 13 2024
Showing 1-8 of 8 results.