cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A065773 Number of divisors of square of true prime powers arising in A065405.

Original entry on oeis.org

5, 7, 7, 5, 13, 7, 5, 17, 5, 19, 5, 13, 5, 5, 7, 11, 7, 5, 5, 5, 13, 5, 7, 31, 5, 5, 5, 5, 5, 5, 13, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 7, 7, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Nov 19 2001

Keywords

Examples

			For k = 3125, tau(k^2) = 11, sigma(k^2) = 12207031 = (5^(tau(k^2)) - 1)/4 = A065403(16) is also a prime.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[10^5], ! PrimeQ[#] && PrimeQ[DivisorSigma[1, #^2]] &]^2] (* Amiram Eldar, Jan 31 2025 *)
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), a=numdiv(m^2); write("b065773.txt", n++, " ", a); if (n==100, return)) ) } \\ Harry J. Smith, Oct 30 2009

Formula

a(n) = A000005(A065405(n)^2).
If A065405(n) = q^c, a prime-power, then sigma(q^(2c)) = A000203(q^(2c)) = (-1 + q^(2c+1))/(q-1) = (-1 + q^A000005(A065405(n)^2))/(q-1) also a prime, from A065403.
Showing 1-1 of 1 results.