cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A065768 Numbers that are sums of divisors of the odd squares; Intersection of A065764 and A065766, written in ascending order and duplicates removed.

Original entry on oeis.org

1, 13, 31, 57, 121, 133, 183, 307, 381, 403, 553, 741, 781, 871, 993, 1093, 1407, 1723, 1729, 1767, 1893, 2257, 2379, 2801, 2863, 3541, 3751, 3783, 3991, 4123, 4557, 4953, 5113, 5403, 5673, 6321, 6897, 6973, 7189, 7581, 8011, 9507, 9517, 9841, 10153
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Terms are the sum of the odd divisors (A000593) of the odd squares (A016754), written in ascending order. Subsequence of the odd terms of A274790. - Timothy L. Tiffin, Feb 12 2022
Equally, the sum of divisors (A000203) as only odd divisors are present in odd squares. - Antti Karttunen, Dec 22 2024

Crossrefs

Sequence A379223 sorted into ascending order, with duplicates removed.

Programs

  • Mathematica
    f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[2, e_] := (4^(e + 1) - 1)/3; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; seq[max_] := Intersection[Select[Array[s1, max], # < max^2 &], Select[Array[s2, max], # < max^2 &]]; seq[101] (* Amiram Eldar, Aug 24 2024 *)

Extensions

Old definition clarified and Timothy L. Tiffin's comment adopted as a new primary definition - Antti Karttunen, Dec 22 2024

A065767 Intersection of A065764 and A065765: n such that x and y exist with sigma[x^2] = n = sigma[2*(y^2)].

Original entry on oeis.org

399, 5187, 12369, 34671, 48279, 73017, 80199, 122493, 152019, 160797, 220647, 259749, 311619, 347529, 396207, 436107, 561393, 687477, 755307, 900543, 949221, 1042587, 1074801, 1142337, 1412859, 1496649, 1509417, 1592409, 1818243
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Examples

			n = 399 = sigma[14^2] = sigma[2*(11^2)] = 1+2+4+7+14+28+49+98+196 = 1+2+11+22+121+242; also sigma[42.42] = sigma[2.33.33] = sigma[1764] = sigma[2378] = 5187.
		

Crossrefs

Programs

  • Mathematica
    Intersection[Table[DivisorSigma[1, w^2], {w, 1, 10000}], Table[DivisorSigma[1, 2*(w^2)], {w, 1, 10000}]]

A057660 a(n) = Sum_{k=1..n} n/gcd(n,k).

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 43, 61, 63, 111, 77, 157, 129, 147, 171, 273, 183, 343, 231, 301, 333, 507, 301, 521, 471, 547, 473, 813, 441, 931, 683, 777, 819, 903, 671, 1333, 1029, 1099, 903, 1641, 903, 1807, 1221, 1281, 1521, 2163, 1197, 2101, 1563, 1911, 1727
Offset: 1

Views

Author

Henry Gould, Oct 15 2000

Keywords

Comments

Also sum of the orders of the elements in a cyclic group with n elements, i.e., row sums of A054531. - Avi Peretz (njk(AT)netvision.net.il), Mar 31 2001
Also inverse Moebius transform of EulerPhi(n^2), A002618.
Sequence is multiplicative with a(p^e) = (p^(2*e+1)+1)/(p+1). Example: a(10) = a(2)*a(5) = 3*21 = 63.
a(n) is the number of pairs (a, b) such that the equation ax = b is solvable in the ring (Zn, +, x). See the Mathematical Reflections link. - Michel Marcus, Jan 07 2017
From Jake Duzyk, Jun 06 2023: (Start)
These are the "contraharmonic means" of the improper divisors of square integers (inclusive of 1 and the square integer itself).
Permitting "Contraharmonic Divisor Numbers" to be defined analogously to Øystein Ore's Harmonic Divisor Numbers, the only numbers for which there exists an integer contraharmonic mean of the divisors are the square numbers, and a(n) is the n-th integer contraharmonic mean, expressible also as the sum of squares of divisors of n^2 divided by the sum of divisors of n^2. That is, a(n) = sigma_2(n^2)/sigma(n^2).
(a(n) = A001157(k)/A000203(k) where k is the n-th number such that A001157(k)/A000203(k) is an integer, i.e., k = n^2.)
This sequence is an analog of A001600 (Harmonic means of divisors of harmonic numbers) and A102187 (Arithmetic means of divisors of arithmetic numbers). (End)

References

  • David M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 152.
  • H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), Vol. 39, No. 1 (1997), pp. 11-35.
  • H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), Vol. 39, No. 2 (1997), pp. 183-194.

Crossrefs

Programs

  • Haskell
    a057660 n = sum $ map (div n) $ a050873_row n
    -- Reinhard Zumkeller, Nov 25 2013
    
  • Mathematica
    Table[ DivisorSigma[ 2, n^2 ] / DivisorSigma[ 1, n^2 ], {n, 1, 128} ]
    Table[Total[Denominator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)))
    
  • PARI
    a(n)=sumdivmult(n,d, eulerphi(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import gcd
    def A057660(n): return sum(n//gcd(n,k) for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A057660(n): return prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = Sum_{d|n} d*A000010(d) = Sum_{d|n} d*A054522(n,d), sum of d times phi(d) for all divisors d of n, where phi is Euler's phi function.
a(n) = sigma_2(n^2)/sigma_1(n^2) = A001157(A000290(n))/A000203(A000290(n)) = A001157(A000290(n))/A065764(n). - Labos Elemer, Nov 21 2001
a(n) = Sum_{d|n} A000010(d^2). - Enrique Pérez Herrero, Jul 12 2010
a(n) <= (n-1)*n + 1, with equality if and only if n is noncomposite. - Daniel Forgues, Apr 30 2013
G.f.: Sum_{n >= 1} n*phi(n)*x^n/(1 - x^n) = x + 3*x^2 + 7*x^3 + 11*x^4 + .... Dirichlet g.f.: sum {n >= 1} a(n)/n^s = zeta(s)*zeta(s-2)/zeta(s-1) for Re s > 3. Cf. A078747 and A176797. - Peter Bala, Dec 30 2013
a(n) = Sum_{i=1..n} numerator(n/i). - Wesley Ivan Hurt, Feb 26 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} lcm(n,k)/k.
a(n) = Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Jun 13 2021: (Start)
Sum_{k=1..n} a(k)/k ~ 3*zeta(3)*n^2/Pi^2.
Sum_{k=1..n} k^2/a(k) ~ A345294 * n.
Sum_{k=1..n} k*A000010(k)/a(k) ~ A345295 * n. (End)
Sum_{k=1..n} a(k) ~ 2*zeta(3)*n^3/Pi^2. - Vaclav Kotesovec, Jun 10 2023

Extensions

More terms from James Sellers, Oct 16 2000

A072861 a(n) = sigma(n)^2.

Original entry on oeis.org

1, 9, 16, 49, 36, 144, 64, 225, 169, 324, 144, 784, 196, 576, 576, 961, 324, 1521, 400, 1764, 1024, 1296, 576, 3600, 961, 1764, 1600, 3136, 900, 5184, 1024, 3969, 2304, 2916, 2304, 8281, 1444, 3600, 3136, 8100, 1764, 9216, 1936, 7056, 6084, 5184, 2304, 15376, 3249
Offset: 1

Views

Author

N. J. A. Sloane, Jul 26 2002

Keywords

References

  • S. Ramanujan, Some formulas in the analytic theory of numbers, Mess. Math. 45 (1915), 81-84, eq. 15. (Reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea Publ., New York 1962, 133-135)

Crossrefs

Cf. A000203, A065764, A072379 (partial sums).

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^2, {n, 1, 50}] (* Vaclav Kotesovec, Feb 05 2019 *)
  • PARI
    a(n)=sigma(n)^2;  /* Joerg Arndt, Oct 07 2012 */

Formula

Dirichlet g.f.: zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2), Re(s)>3. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 21 2002
From Vladeta Jovovic, Jul 30 2002: (Start)
Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^2.
a(n) = Sum_{d|n} n/d*sigma(d^2). (End)
Equals the Dirichlet convolution of A065764 by A000027: a(n) = sigma(n^2) * n. - R. J. Mathar, Apr 02 2011
Sum_{k>=1} 1/a(k) = A109693 = 1.3064565120389505680107494870912715497583907915664910373609699598615342645... - Vaclav Kotesovec, Sep 20 2020

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.

A175926 Sum of divisors of cubes.

Original entry on oeis.org

1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200
Offset: 1

Views

Author

Zak Seidov, Oct 19 2010

Keywords

Comments

The Mobius transform of the sequence is 1, 14, 39 ,112, 155,..., which equals the sequence defined by n*A160889(n). - R. J. Mathar, Apr 15 2011
Zhi-Wei Sun noted that the first 10^7 terms are pairwise distinct, but Noam D. Elkies found that a(48142241) = a(48374911), a(384422506) = a(403764207) and so on. - Zhi-Wei Sun, Jan 08 2014

Crossrefs

Cf. sigma(n^k): A000203 (k=1), A065764 (k=2), this sequence (k=3), A202994 (k=4), A203556 (k=5).

Programs

  • Magma
    [ SumOfDivisors(n^3) : n in [1..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    DivisorSigma[1,#]&/@((Range[40])^3) (* Harvey P. Dale, Aug 30 2015 *)
    f[p_, e_] := (p^(3*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sigma(n^3); \\ Amiram Eldar, Nov 05 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A175926(n): return prod((p**(3*e+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(n) = A000203(n^3). - R. J. Mathar, Mar 31 2011
Multiplicative with a(p^e) = (p^(3e+1)-1)/(p-1). - R. J. Mathar, Mar 31 2011
Sum_{k>=1} 1/a(k) = 1.11535899887110289127674868460900333554265894187008102863022551119560512446... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 0.4732277044... . - Amiram Eldar, Nov 05 2022

A366439 The sum of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 15, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 60, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 72, 48, 72, 54, 120, 72, 120, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 180, 90
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366439_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e&1 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A366439_list = list(islice(A366439_gen(),30)) # Chai Wah Wu, Oct 11 2023

Formula

a(n) = A000203(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .

A346868 Sum of divisors of the numbers with no middle divisors.

Original entry on oeis.org

4, 6, 8, 18, 12, 14, 24, 18, 20, 32, 36, 24, 42, 40, 30, 32, 48, 54, 38, 60, 56, 42, 44, 84, 72, 48, 72, 98, 54, 72, 80, 90, 60, 62, 96, 84, 68, 126, 96, 72, 74, 114, 124, 140, 168, 80, 126, 84, 108, 132, 120, 90, 168, 128, 144, 120, 98, 102, 216, 104, 192, 162, 108, 110
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is equal to zero.
So knowing this characteristic shape we can know if a number has middle divisors (or not) just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with no middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.
All terms are even numbers.

Examples

			a(4) = 18 because the sum of divisors of the fourth number with no middle divisors (i.e., 10) is 1 + 2 + 5 + 10 = 18.
On the other hand we can see that in the main diagonal of every diagram the width is equal to zero as shown below.
Illustration of initial terms:
m(n) = A071561(n).
.
   n   m(n) a(n)   Diagram
.                      _   _   _     _ _   _ _     _   _   _ _ _     _
                      | | | | | |   | | | | | |   | | | | | | | |   | |
                   _ _|_| | | | |   | | | | | |   | | | | | | | |   | |
   1    3    4    |_ _|  _|_| | |   | | | | | |   | | | | | | | |   | |
                   _ _ _|    _|_|   | | | | | |   | | | | | | | |   | |
   2    5    6    |_ _ _|  _|    _ _| | | | | |   | | | | | | | |   | |
                   _ _ _ _|     |  _ _|_| | | |   | | | | | | | |   | |
   3    7    8    |_ _ _ _|  _ _|_|    _ _|_| |   | | | | | | | |   | |
                            |  _|     |  _ _ _|   | | | | | | | |   | |
                   _ _ _ _ _| |      _|_|    _ _ _|_| | | | | | |   | |
   4   10   18    |_ _ _ _ _ _|  _ _|       |    _ _ _|_| | | | |   | |
   5   11   12    |_ _ _ _ _ _| |  _|      _|   |  _ _ _ _|_| | |   | |
                   _ _ _ _ _ _ _| |      _|  _ _| | |  _ _ _ _|_|   | |
   6   13   14    |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _ _| |
   7   14   24    |_ _ _ _ _ _ _ _| |     |     |  _|_|   |  _ _ _ _ _|
                                    |  _ _|  _ _|_|       | |
                   _ _ _ _ _ _ _ _ _| |  _ _|  _|        _|_|
   8   17   18    |_ _ _ _ _ _ _ _ _| | |_ _ _|         |
                   _ _ _ _ _ _ _ _ _ _| |  _ _|        _|
   9   19   20    |_ _ _ _ _ _ _ _ _ _| | |        _ _|
                   _ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
  10   21   32    |_ _ _ _ _ _ _ _ _ _ _| | |  _ _|
  11   22   36    |_ _ _ _ _ _ _ _ _ _ _ _| | |
  12   23   24    |_ _ _ _ _ _ _ _ _ _ _ _| | |
                                            | |
                   _ _ _ _ _ _ _ _ _ _ _ _ _| |
  13   26   42    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], 0, Plus @@ d]]; Select[Array[s, 110], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1; \\ A071561 apply(sigma, select(is, [1..150])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071561(n)).

A366440 The sum of divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 13, 18, 12, 28, 14, 24, 24, 18, 39, 20, 42, 32, 36, 24, 31, 42, 56, 30, 72, 32, 48, 54, 48, 91, 38, 60, 56, 42, 96, 44, 84, 78, 72, 48, 57, 93, 72, 98, 54, 72, 80, 90, 60, 168, 62, 96, 104, 84, 144, 68, 126, 96, 144, 72, 74, 114, 124, 140
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), iscubefree = 1); for(i = 1, #f~, if(f[i, 2] > 2, iscubefree = 0; break)); if(iscubefree, print1(sigma(f), ", ")));
    
  • Python
    from sympy import mobius, integer_nthroot, divisor_sigma
    def A366440(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_sigma(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000203(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15*zeta(3)/(2*Pi^2) = A082020 * A002117 / 2 = 0.913453711751... .
The asymptotic mean of the abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = 15/Pi^2 = 1.519817... (A082020).

A065766 Sum of divisors of twice a square number, divided by three.

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 121, 155, 133, 273, 183, 285, 403, 341, 307, 605, 381, 651, 741, 665, 553, 1105, 781, 915, 1093, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2541, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 3751, 2765, 2257, 4433, 2801
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..50],n->Sigma(2*n^2))/3; # Muniru A Asiru, Dec 07 2018
    
  • Magma
    [SumOfDivisors(2*n^2)/3: n in [1..60]]; // Vincenzo Librandi, Dec 07 2018
    
  • Maple
    with(numtheory): [sigma(2*n^2)/3$n=1..50]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Array[DivisorSigma[1, 2 #^2]/3 &, 49] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n) = { sigma(2*n^2)/3 } \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from sympy import divisor_sigma
    for n in range(1,50): print(divisor_sigma(2*n**2,1)/3) # Stefano Spezia, Dec 07 2018

Formula

Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(2*e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Dec 01 2001
a(n) = sigma(2*n^2)/3 = A000203(2*A000290(n))/3 = A065765(n)/3.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.487175... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/(zeta(2*s-2)*(1+2/2^s)). - Amiram Eldar, Feb 12 2023
Showing 1-10 of 59 results. Next