A174405
Partial sums of Sum_{k=1..n} n/gcd(n,k), or partial sums of Sum_{d|n} d*phi(d) (see A057660).
Original entry on oeis.org
1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, 462, 619, 748, 895, 1066, 1339, 1522, 1865, 2096, 2397, 2730, 3237, 3538, 4059, 4530, 5077, 5550, 6363, 6804, 7735, 8418, 9195, 10014, 10917, 11588, 12921, 13950, 15049, 15952, 17593, 18496, 20303, 21524, 22805, 24326, 26489, 27686, 29787, 31350, 33261, 34988
Offset: 1
a(9) = 1 + 3 + 7 + 11 + 21 + 21 + 43 + 43 + 61 = 211 is prime.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Marko Riedel, answer to 'Euler phi function, number theory', MathStackExchange, 2014.
- Günter Rote, Moritz Rüber, and Morteza Saghafian, Grid Peeling of Parabolas, arXiv:2402.15787 [cs.CG], 2024. See p. 9.
- J. Sándor and A. V. Kramer, Über eine zahlentheoretische Funktion. Mathematica Moravica, 3 (1999), 53-62.
-
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate @ Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
-
a(n)=sum(k=1,n,sumdiv(k,d,eulerphi(d)*d)) \\ Charles R Greathouse IV, May 21 2014
-
a(n) = sum(k=1, n, k * eulerphi(k) * (n\k)); \\ Michel Marcus, May 30 2018
Original entry on oeis.org
1, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 2520, 4620, 9240, 13860, 27720, 55440, 60060, 120120, 180180, 360360, 720720, 1441440, 1801800, 2042040, 3063060, 6126120, 12252240, 24504480, 30630600, 36756720, 38798760
Offset: 1
A057660(60060)/(60060*60059+1) = 1211716737/3607143541 ~ 0.3359214, and every number less than 60060 has a ratio > 0.34, so 60060 is in this sequence.
A318444
Numerators of the sequence whose Dirichlet convolution with itself yields A057660(n) = Sum_{k=1..n} n/gcd(n,k).
Original entry on oeis.org
1, 3, 7, 35, 21, 21, 43, 239, 195, 63, 111, 245, 157, 129, 147, 6851, 273, 585, 343, 735, 301, 333, 507, 1673, 1643, 471, 3011, 1505, 813, 441, 931, 50141, 777, 819, 903, 6825, 1333, 1029, 1099, 5019, 1641, 903, 1807, 3885, 4095, 1521, 2163, 47957, 6555, 4929, 1911, 5495, 2757, 9033, 2331, 10277, 2401, 2439, 3423
Offset: 1
-
a57660[n_] := DivisorSigma[2, n^2]/DivisorSigma[1, n^2];
f[1] = 1; f[n_] := f[n] = 1/2 (a57660[n] - Sum[f[d]*f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
Table[f[n] // Numerator, {n, 1, 60}] (* Jean-François Alcover, Sep 13 2018 *)
-
up_to = 16384;
A057660(n) = sumdivmult(n, d, eulerphi(d)*d); \\ From A057660
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
v318444aux = DirSqrt(vector(up_to, n, A057660(n)));
A318444(n) = numerator(v318444aux[n]);
-
for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-p*X)/((1-p^2*X)*(1-X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
A377585
E.g.f.: exp(Sum_{k>=1} A057660(k) * x^k).
Original entry on oeis.org
1, 1, 7, 61, 577, 7381, 96511, 1619857, 28368481, 560654857, 12100090231, 282510616741, 7098784113697, 190647458125021, 5461212525476527, 165494332157561401, 5306572876379307841, 178898083900878623377, 6336492991778941139431, 234867483921621706900237, 9096385945218131126509441
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k^2]/DivisorSigma[1, k^2]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
A060640
If n = Product p_i^e_i then a(n) = Product (1 + 2*p_i + 3*p_i^2 + ... + (e_i+1)*p_i^e_i).
Original entry on oeis.org
1, 5, 7, 17, 11, 35, 15, 49, 34, 55, 23, 119, 27, 75, 77, 129, 35, 170, 39, 187, 105, 115, 47, 343, 86, 135, 142, 255, 59, 385, 63, 321, 161, 175, 165, 578, 75, 195, 189, 539, 83, 525, 87, 391, 374, 235, 95, 903, 162, 430, 245, 459, 107, 710, 253, 735, 273, 295, 119
Offset: 1
a(4) = a(2^2) = 1 + (2)*(2) + (3)*(2^2) = 17;
a(6) = a(2)*a(3) = (1 + (2)*(2))*(1+(2)*(3)) = (5)*(7) = 35.
a(6) = tau(1) + 2*tau(2) + 3*tau(3) + 6*tau(6) = 1 + 2*2 + 3*2 + 6*4 = 35.
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976, p. 120.
-
a060640 n = sum [d * a000005 d | d <- a027750_row n]
-- Reinhard Zumkeller, Feb 29 2012
-
A060640 := proc(n) local ans, i, j; ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(1+sum((j+1)*ifactors(n)[2][i][1]^j,j=1..ifactors(n)[2][i][2])): od: RETURN(ans) end:
-
a[n_] := Total[#*DivisorSigma[1, n/#] & /@ Divisors[n]];
a /@ Range[59] (* Jean-François Alcover, May 19 2011, after Vladeta Jovovic *)
f[p_, e_] := ((e + 1)*p^(e + 2) - (e + 2)*p^(e + 1) + 1)/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
-
j=[]; for(n=1,200,j=concat(j,sumdiv(n,d,n/d*sigma(d)))); j
-
a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p*X)^2)[n]) /* Ralf Stephan */
-
N=66; default(seriesprecision,N); x=z+O(z^(N+1))
c=sum(j=1,N,j*x^j); t=1/prod(j=1,N, eta(x^(j)));
t=log(t);t=serconvol(t,c);
Vec(t) /* Joerg Arndt, May 03 2008 */
-
{ for (n=1, 1000, write("b060640.txt", n, " ", direuler(p=2, n, 1/(1 - X)/(1 - p*X)^2)[n]); ) } /* Harry J. Smith, Jul 08 2009 */
-
def A060640(n) :
sigma = sloane.A000203
return add(sigma(k)*(n/k) for k in divisors(n))
[A060640(i) for i in (1..59)] # Peter Luschny, Sep 15 2012
A057661
a(n) = Sum_{k=1..n} lcm(n,k)/n.
Original entry on oeis.org
1, 2, 4, 6, 11, 11, 22, 22, 31, 32, 56, 39, 79, 65, 74, 86, 137, 92, 172, 116, 151, 167, 254, 151, 261, 236, 274, 237, 407, 221, 466, 342, 389, 410, 452, 336, 667, 515, 550, 452, 821, 452, 904, 611, 641, 761, 1082, 599, 1051, 782, 956, 864, 1379, 821, 1166
Offset: 1
- H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), 39 (1997), 11-35.
- H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), 39 (1997), 183-194.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Zachary Franco, Problem 12114, The American Mathematical Monthly, Vol. 126, No. 5 (2019), p. 469; A Dirichlet Series with Reduced Numerators, Solution to Problem 12114 by Tamas Wiandt, ibid., Vol. 128, No. 1 (2021), pp. 91-92.
- Index entries for sequences related to lcm's.
-
a057661 n = a051193 n `div` n -- Reinhard Zumkeller, Jun 10 2015
-
[&+[&+[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016
-
Table[Total[Numerator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
-
a(n)=sum(k=1,n,lcm(n,k))/n \\ Charles R Greathouse IV, Feb 07 2017
-
from math import lcm
def A057661(n): return sum(lcm(n,k)//n for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
-
from math import prod
from sympy import factorint
def A057661(n): return 1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1 # Chai Wah Wu, Aug 05 2024
A061255
Euler transform of Euler totient function phi(n), cf. A000010.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 21, 37, 60, 98, 157, 251, 392, 612, 943, 1439, 2187, 3293, 4930, 7330, 10839, 15935, 23315, 33933, 49170, 70914, 101861, 145713, 207638, 294796, 417061, 588019, 826351, 1157651, 1616849, 2251623, 3126775, 4330271, 5981190
Offset: 0
-
nn = 20; b = Table[EulerPhi[n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
A054531
Triangular array T read by rows: T(n,k) = n/gcd(n,k) (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 2, 4, 1, 5, 5, 5, 5, 1, 6, 3, 2, 3, 6, 1, 7, 7, 7, 7, 7, 7, 1, 8, 4, 8, 2, 8, 4, 8, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 10, 5, 2, 5, 10, 5, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1, 13, 13, 13, 13, 13
Offset: 1
Triangle begins
1;
2, 1;
3, 3, 1;
4, 2, 4, 1;
5, 5, 5, 5, 1;
6, 3, 2, 3, 6, 1;
7, 7, 7, 7, 7, 7, 1;
8, 4, 8, 2, 8, 4, 8, 1;
9, 9, 3, 9, 9, 3, 9, 9, 1;
10, 5, 10, 5, 2, 5, 10, 5, 10, 1;
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1;
12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1;
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1;
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
- R. J. Mathar, Plots of cycle graphs of the finite groups up to order 36, (2015).
- Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
-
a054531 n k = div n $ gcd n k
a054531_row n = a054531_tabl !! (n-1)
a054531_tabl = zipWith (\u vs -> map (div u) vs) [1..] a050873_tabl
-- Reinhard Zumkeller, Jun 10 2013
-
Table[n/GCD[n,k], {n,1,10}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 13 2017 *)
-
for(n=1,10, for(k=1,n, print1(n/gcd(n,k), ", "))) \\ G. C. Greubel, Sep 13 2017
A066443
Number of distinct paths of length 2n+1 along edges of a unit cube between two fixed adjacent vertices.
Original entry on oeis.org
1, 7, 61, 547, 4921, 44287, 398581, 3587227, 32285041, 290565367, 2615088301, 23535794707, 211822152361, 1906399371247, 17157594341221, 154418349070987, 1389765141638881, 12507886274749927, 112570976472749341
Offset: 0
From _Michael B. Porter_, Aug 22 2016: (Start)
Give coordinates (a,b,c) to the vertices of the cube, where a, b, and c are either 0 or 1. For n = 1, the a(1) = 7 paths of length 2n + 1 = 3 from (0,0,0) to (0,0,1) are:
(0,0,0) -> (0,0,1) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (0,0,1) -> (0,1,1) -> (0,0,1)
(0,0,0) -> (0,0,1) -> (1,0,1) -> (0,0,1)
(0,0,0) -> (0,1,0) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (0,1,0) -> (0,1,1) -> (0,0,1)
(0,0,0) -> (1,0,0) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (1,0,0) -> (1,0,1) -> (0,0,1) (End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- G. Benkart and D. Moon, A Schur-Weyl Duality Approach to Walking on Cubes, arXiv preprint arXiv:1409.8154 [math.RT], 2014 and Ann. Combin. 20 (3) (2016) 397-417.
- E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013. - _N. J. A. Sloane_, Feb 28 2013
- E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84.
- M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly, 54:369-391, 1947.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 5.
- Vladimir Pletser, Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, arXiv:1409.7969 [math.NT], 2014.
- Eric Weisstein's World of Mathematics, Repunit
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
-
[(3^(2*n+1)+1)/4: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
-
seq((3^(2*n+1) + 1)/4, n=0..18); # Zerinvary Lajos, Jun 16 2007
-
NestList[9 # - 2 &, 1, 18] (* or *)
Table[(3^(2 n + 1) + 1)/4, {n, 0, 18}] (* or *)
CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 9 x)), {x, 0, 18}], x] (* Michael De Vlieger, Aug 22 2016 *)
-
a(n)=3^(2*n+1)\/4 \\ Charles R Greathouse IV, Jul 02 2013
-
Vec((1-3*x)/((1-x)*(1-9*x)) + O(x^50)) \\ Altug Alkan, Nov 13 2015
A068963
a(n) = Sum_{d|n} phi(d^3).
Original entry on oeis.org
1, 5, 19, 37, 101, 95, 295, 293, 505, 505, 1211, 703, 2029, 1475, 1919, 2341, 4625, 2525, 6499, 3737, 5605, 6055, 11639, 5567, 12601, 10145, 13627, 10915, 23549, 9595, 28831, 18725, 23009, 23125, 29795, 18685, 49285, 32495, 38551, 29593
Offset: 1
-
Table[Total[EulerPhi[Divisors[n]^3]],{n,50}] (* Harvey P. Dale, Feb 24 2013 *)
f[p_, e_] := p^2*(p - 1)*(p^(3 e) - 1)/(p^3 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Jun 19 2022 *)
-
a(n) = sumdiv(n, d, eulerphi(d^3)); \\ Michel Marcus, Mar 10 2018
Showing 1-10 of 65 results.
Comments