A375019 Positive integers n such that (1, n^2 - 1, n^2) is an abc triple.
3, 7, 8, 9, 15, 17, 25, 26, 27, 31, 48, 49, 55, 63, 64, 80, 81, 97, 99, 125, 127, 161, 224, 225, 242, 243, 244, 251, 255, 288, 289, 325, 343, 351, 361, 449, 485, 487, 511, 512, 513, 575, 577, 624, 625, 649, 675, 676, 687, 721, 728, 729, 783, 960, 961, 999
Offset: 1
Keywords
Examples
For a(1) = 3: (a,b,c) = (1,8,9) is an abc triple. Reason: rad(1*8*9) = rad(72) = 6. Since 6 < 3^2, 3 is a term of this sequence.
Links
- William Hu, Table of n, a(n) for n = 1..1816
- Bart de Smit, ABC-triples
- Wikipedia, abc conjecture
Programs
-
PARI
is_a375019(n) = factorback(factorint((n-1)*n*(n+1))[,1]) < n^2 \\ Hugo Pfoertner, Aug 09 2024
-
Python
""" Note that this code generates all terms <= n, not the nth term. This code can be further optimized with an O(n log n) sieve, which we do not write here. """ n = 10**5 # replace this number with whatever limit from sympy import primefactors, prod def rad(n): return 1 if n < 2 else prod(primefactors(n)) # Function to help determine whether a value is a term. def is_term(k: int): # Calculate rad((k^2-1)*k^2) = rad((k-1)*k*(k+1)). rad_abc = rad(k-1) * rad(k) * rad(k+1) if k % 2 == 1: rad_abc //= 2 # 2 is double-counted as a prime factor. No other multiple-counts are possible. return rad_abc < k**2 # The final sequence. a = list(filter(is_term, range(2, n+1))) # William Hu, Aug 09 2024
Comments