cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A366438 The number of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 4, 4, 2, 8, 2, 6, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 2, 4, 2, 8, 4, 8, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 8, 2, 4, 4, 4, 4, 12, 2, 2, 8, 2, 8, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Comments

1 is the only odd term in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366438_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e&1 for e in f):
                yield prod(e+1 for e in f)
    A366438_list = list(islice(A366438_gen(),30)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A268335(n)).

A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 9, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 36, 42, 28, 30, 72, 32, 33, 48, 54, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 54, 84, 72, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 108, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .

A366440 The sum of divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 13, 18, 12, 28, 14, 24, 24, 18, 39, 20, 42, 32, 36, 24, 31, 42, 56, 30, 72, 32, 48, 54, 48, 91, 38, 60, 56, 42, 96, 44, 84, 78, 72, 48, 57, 93, 72, 98, 54, 72, 80, 90, 60, 168, 62, 96, 104, 84, 144, 68, 126, 96, 144, 72, 74, 114, 124, 140
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), iscubefree = 1); for(i = 1, #f~, if(f[i, 2] > 2, iscubefree = 0; break)); if(iscubefree, print1(sigma(f), ", ")));
    
  • Python
    from sympy import mobius, integer_nthroot, divisor_sigma
    def A366440(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_sigma(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000203(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15*zeta(3)/(2*Pi^2) = A082020 * A002117 / 2 = 0.913453711751... .
The asymptotic mean of the abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = 15/Pi^2 = 1.519817... (A082020).

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A368472 Product of exponents of prime factorization of the exponentially odd numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Comments

The odd terms of A005361.
The first position of 2*k-1, for k = 1, 2, ..., is 1, 7, 24, 91, 154, 1444, 5777, 610, 92349, ..., which is the position of A085629(2*k-1) in A268335.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]]}, If[OddQ[p], p, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p%2, print1(p, ", ")));}

Formula

a(n) = A005361(A268335(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2)^2/d) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^5) = 1.38446562720473484463..., where d = A065463 is the asymptotic density of the exponentially odd numbers.

A366442 The sum of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 6, 8, 12, 14, 18, 20, 24, 31, 30, 32, 48, 38, 42, 44, 48, 57, 54, 72, 60, 62, 84, 68, 72, 74, 96, 80, 84, 108, 90, 112, 120, 98, 102, 104, 108, 110, 114, 144, 144, 133, 156, 128, 132, 160, 138, 140, 168, 180, 150, 152, 192, 158, 192, 164, 168, 183, 174, 248
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = sigma((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_sigma
    def A366442(n): return divisor_sigma((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000203(A007310(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2) = 1.644934... (A013661).
The asymptotic mean of the abundancy index of the 5-rough numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007310(k) = Pi^2/9 = 1.0966227... (A100044).
In general, the asymptotic mean of the abundancy index of the prime(k)-rough numbers is zeta(2) * Product_{i=1..k-1} (1 - 1/prime(i)^2).

A374457 The Dedekind psi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 12, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 48, 42, 36, 30, 72, 32, 48, 48, 54, 48, 38, 60, 56, 72, 42, 96, 44, 72, 48, 72, 54, 108, 72, 96, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 144, 90
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to psi: A000082, A033196, A323332, A371413, A371415.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374456.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]+1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A001615(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 / A065463^2 = 2.01515877170903249510... .

A382660 The unitary totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 7, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 14, 12, 26, 28, 8, 30, 31, 20, 16, 24, 36, 18, 24, 28, 40, 12, 42, 22, 46, 32, 52, 26, 40, 42, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 70, 88, 72, 60, 46, 72
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uphi /@ Select[Range[100], expOddQ]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uphi, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A047994(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/(2*d^2)) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.504949539649594981601..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A382661 The unitary Jordan totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 63, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 504, 728, 840, 576, 960, 1023, 960, 864, 1152, 1368, 1080, 1344, 1512, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2184, 2880, 3024, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e)-1; uj2[1] = 1; uj2[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uj2 /@ Select[Range[100], expOddQ]
  • PARI
    uj2(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uj2, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A191414(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*d^3)) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^7) = 0.59726984314764530141..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A380326 a(n) is the sum of squarefree divisors of the n-th exponentially odd number.

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 3, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 12, 42, 4, 30, 72, 32, 3, 48, 54, 48, 38, 60, 56, 18, 42, 96, 44, 72, 48, 72, 54, 12, 72, 24, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 36, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Comments

The number of squarefree divisors of the n-th exponentially odd number is A366534(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p + 1; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    A048250(f) = vecprod(apply(x -> x+1, f[, 1]));
    list(lim) = for(k = 1, lim, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(A048250(f), ", ")));

Formula

a(n) = A048250(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (1/d^2) * Product_{p prime} (1 - 1/(p*(p^2+1))) = 1.73161118511498727822..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
Showing 1-10 of 10 results.