cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Noam D. Elkies

Noam D. Elkies's wiki page.

Noam D. Elkies has authored 9 sequences.

A135710 Positive integers b such that more than one prime factor p of b attains the maximum of (p-1)*v_p(b) where v_p(b) is the valuation of b at p.

Original entry on oeis.org

12, 45, 80, 90, 144, 180, 189, 240, 360, 378, 448, 637, 720, 756, 945, 1274, 1344, 1512, 1625, 1728, 1890, 1911, 2025, 2240, 2548, 2673, 3024, 3185, 3250, 3780, 3822, 4032, 4050, 4875, 5096, 5346, 5733, 6048, 6125, 6370, 6400, 6500, 6517, 6720, 7007, 7560, 7644
Offset: 1

Author

Noam D. Elkies, Nov 25 2007

Keywords

Comments

Given b, the number of trailing zeros at the end of the base-b representation of x! is asymptotic to x/M where M is the maximum over p|b of (p-1)*v_p(b).
Usually only one prime p attains the maximum and then the number is v_p(x!)/v_p(b) for all but finitely many x.
But for b=12,45,80,90,..., at least two v_p(x!) must be computed. For example: if b=12 then for x=2006 there are 998 trailing zeros due to v_3 but for x=2007 there are 999 due to v_2.

Examples

			For b=90 we have (p-1)*v_p(b) = 1, 4, 4 for p = 2, 3, 5 respectively so the maximum of 4 is attained twice (p=3 and p=5).
		

References

  • Eryk LIPKA, Automaticity of the sequence of the last nonzero digits of n! in a fixed base, Journal de Théorie des Nombres de Bordeaux 31 (2019), 283-291. [See Theorem 3.7 on page 290, and consider the complementary sequence.] - Jean-Paul Allouche and Don Reble, Oct 22 2020.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 1, a(n-1)) while (s-> nops(s)<2 or (l->
          l[-2] (p-1)*padic[ordp](k, p),
           s))))([numtheory[factorset](k)[]]) do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 23 2020
  • Mathematica
    F[n_] := Module[{f, p, v, vmax}, f = FactorInteger[n]; p = f[[All, 1]]; v = Table[ f[[i, 2]]*(p[[i]]-1), {i, 1, Length[p]}]; vmax = Max[v]; Sum[Boole[v[[i]] == vmax], {i, 1, Length[v]}]]; Reap[For[n = 1, n <= 6400, n++, If[F[n] > 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 09 2014, translated from PARI *)
  • PARI
    { F(n, f,p,v,vmax)= f=factor(n); p=f[,1]; v=vector(length(p),i,f[i,2]*(p[i]-1)); vmax=vecmax(v); sum(i=1,length(v),v[i]==vmax) } for(n=1,6400,if(F(n)>1,print(n)))

A062693 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 3.

Original entry on oeis.org

1254, 2605, 2774, 3502, 4199, 4669, 4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, 9654, 10199, 10549, 11005, 11029, 12166, 12270, 12534, 12935, 13317, 14965, 15655, 16151, 16206, 16887, 17958, 18221, 19046, 19726, 20005, 20366
Offset: 0

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

Conjectural, as detailed in the pages from which it is extracted (see the first few links at the web site mentioned for details), but the conjecture is supported by much numerical and theoretical evidence.

Crossrefs

Programs

  • PARI
    r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1]
    for(n=1,1e4,if(r(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011

A062695 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 2.

Original entry on oeis.org

34, 41, 65, 137, 138, 145, 154, 161, 194, 210, 219, 226, 257, 265, 291, 299, 313, 323, 330, 353, 371, 386, 395, 410, 426, 434, 442, 457, 465, 505, 514, 546, 561, 602, 609, 651, 658, 674, 689, 721, 723, 731, 761, 777, 793, 866, 889, 890, 905, 915, 985, 987, 995
Offset: 1

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

These n are precisely the primitive congruent numbers (A006991) with n==1, n==2, or n==3 (mod 8). - T. D. Noe, Aug 02 2006

Programs

  • PARI
    r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1]
    for(n=1,1e3,if(issquarefree(n)&&r(n)==2,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011; corrected by Frank M Jackson, Aug 04 2016

Extensions

More terms from Jinyuan Wang, Dec 12 2020

A062694 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 3 and nontrivial SHA[2].

Original entry on oeis.org

42486, 68839, 80189, 82205, 83845, 88502, 92045, 112326, 116645, 125749, 142222, 182005, 199805, 202742, 270805, 275286, 282613, 287246, 295222, 342205, 372742, 392502, 440453, 450079, 473263, 477581, 487302, 488047
Offset: 0

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

Conjectural, as detailed in the pages from which it is extracted (see the first few links at the web site mentioned for details), but the conjecture is supported by much numerical and theoretical evidence.

Crossrefs

A070030 Number of closed Knight's tours on a 3 X 2n board.

Original entry on oeis.org

0, 0, 0, 0, 16, 176, 1536, 15424, 147728, 1448416, 14060048, 136947616, 1332257856, 12965578752, 126169362176, 1227776129152, 11947846468608, 116266505653888, 1131418872918784, 11010065269439104, 107141489725900544, 1042616896632882688, 10145938076107491328
Offset: 1

Author

Noam D. Elkies, Apr 13 2002

Keywords

Comments

Leonhard Euler stated that no such tours are possible [Memoires Acad. Roy. Sci. (Berlin, 1759), 310-337], and many authors echoed this statement until Ernest Bergholt exhibited solutions for 2n=10 and 12 in British Chess Magazine 1918, page 74. The full set of 16 solutions for 2n=10 was published by Kraitchik in 1927. - Don Knuth, Apr 28 2010
Obtained independently by Don Knuth and Noam D. Elkies in April 1994, both using the transfer-matrix method (in slightly different ways). For this method, see for instance chapter 4.7 of R. P. Stanley's Enumerative Combinatorics, Vol. 1 (1986).
Ian Stewart, Mathematical Recreations column, Scientific American, February 1998, "Feedback", page 95, reports that Richard Ulmer of Denver has sent him a letter reporting work on this subject, about which he is writing a thesis, giving the terms though a(21). - N. J. A. Sloane, Mar 01 2018

Examples

			The smallest 3 X 2n board admitting a closed Knight's tour is the 3 X 10, on which there are 16 such tours.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

See also A169764, which gives the number of closed Knight's tours on a 3 X n board. Cf. A169696, A169765-A169777, A001230.

Programs

  • Mathematica
    Rest[CoefficientList[Series[16 * (x^5 + 5*x^6 - 34*x^7 - 116*x^8 + 505*x^9 + 616*x^10 - 3179*x^11 - 4*x^12 + 9536*x^13 - 8176*x^14 - 13392*x^15 + 15360*x^16 + 13888*x^17 + 2784*x^18 - 3328*x^19 - 22016*x^20 + 5120*x^21 + 2048*x^22) / (1 - 6*x - 64*x^2 + 200*x^3 + 1000*x^4 - 3016*x^5 - 3488*x^6 + 24256*x^7 - 23776*x^8 - 104168*x^9 + 203408*x^10 + 184704*x^11 - 443392*x^12 - 14336*x^13 + 151296*x^14 - 145920*x^15 + 263424*x^16 - 317440*x^17 - 36864*x^18 + 966656*x^19 - 573440*x^20 - 131072*x^21), {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 03 2016 *)
  • PARI
    g = 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^ 12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^1 0 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424* z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21); g = g + O(z^31); vector(30,n,polcoeff(g,n))

Formula

Generating function: 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^10 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424*z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21).
Asymptotic value .0001899*3.11949^(2n). - Don Knuth, Apr 28 2010. More decimal places: a(n) ~ 0.0001898644879979384968655648993009439045986223511152141689341... * 3.1194904567551021585814810124470909514449088706168023079811958...^(2*n). - Vaclav Kotesovec, Mar 03 2016
a(n) = A158074(n)/2. - Eric W. Weisstein, Mar 18 2009
Recurrence (D. E. Knuth and N. D. Elkies, 1994): a(n) = 6*a(n-1) + 64*a(n-2) - 200*a(n-3) - 1000*a(n-4) + 3016*a(n-5) + 3488*a(n-6) - 24256*a(n-7) + 23776*a(n-8) + 104168*a(n-9) - 203408*a(n-10) - 184704*a(n-11) + 443392*a(n-12) + 14336*a(n-13) - 151296*a(n-14) + 145920*a(n-15) - 263424*a(n-16) + 317440*a(n-17) + 36864*a(n-18) - 966656*a(n-19) + 573440*a(n-20) + 131072*a(n-21), for n>=23. - Vaclav Kotesovec, Mar 03 2016
a(n) = A383660(3n). - Don Knuth, May 05 2025

Extensions

Comment corrected by Johannes W. Meijer, Nov 22 2010

A014619 Exponential generating function is -f(x) * Integral_{t = 0..x} exp(exp(-t) - 1) dt, where f(x) = exp(1 - x - exp(-x)) is the exponential generating function for A014182.

Original entry on oeis.org

-1, 1, 1, -5, 5, 21, -105, 141, 777, -5513, 13209, 39821, -527525, 2257425, -41511, -70561285, 531862173, -1559180499, -8858267353, 147780183829, -936560917615, 1352130196615, 38710924110081, -487251979381019, 2846575686392251, 872653153712201
Offset: 1

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k + 1) * StirlingS2[n + 1, k + 1] * ((-1)^k * k! * Subfactorial[-k - 1] - Subfactorial[-1]), {k, 0, n}]; Table[a[n] // FullSimplify, {n, 1, 26}] (* Jean-François Alcover, Jan 09 2014, after Vladeta Jovovic *)
    nmax = 25; Rest[CoefficientList[Series[E^(-E^(-x) - x) * (Gamma[0, -1] - Gamma[0, -E^(-x)]), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 10 2024 *)
  • PARI
    a(n)=local(A,B);if(n<0,0, A=exp(-x+x*O(x^n)); B=exp(A-1);n!*polcoeff(-intformal(B)*A/B,n))

Formula

E.g.f. A(x) = y satisfies y'' + y'(2-exp(-x)) + y = 0. - Michael Somos, Mar 11 2004
a(n) = Sum_{k = 0..n} (-1)^(n-k+1)*Stirling2(n+1, k+1)*A003422(k). - Vladeta Jovovic, Jan 06 2005
The sequence b(n) = (-1)^n*a(n) satisfies the recurrence: b(n) = -Sum_{i = 1..n} b(i-1)*C(n, i), b(0) = -1. - Ralf Stephan, Feb 24 2005
From Peter Bala, Mar 23 2024: (Start)
It appears that a(n) = Sum_{k = 1..n+1} binomial(n+1, k)*a(k). See Dragovich 2017, Table 1.
If true then the following hold: setting a(0) = -1 then
a(n) = Sum_{k = 1..n-1} (-1)^(n-k)*binomial(n-1, k-1)*a(k-1);
the o.g.f F(x) = - ( x/(1 + x)^2 + x^2/((1 + x)*(1 + 2*x)^2) + x^3/((1 + x)*(1 + 2*x)*(1 + 3*x)^2) + ... ) - Cf. A040027;
F(x) = - x/(1 + x)^2 + x/(1 + x)^2*F(x/(1 + x)). (End)

Extensions

More terms from Jason Earls, Jun 28 2001

A031507 a(n) = smallest k>0 such that the elliptic curve y^2 = x^3 + k has rank n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 15, 113, 2089, 66265, 1358556
Offset: 0

Keywords

Comments

See A031508 for the smallest negative k. - Artur Jasinski, Nov 21 2011
See A060950 for the rank of y^2 = x^3 + n. - Jonathan Sondow, Sep 10 2013
Gebel, Pethö, & Zimmer: "One experimental observation derived from the tables is that the rank r of Mordell's curves grows according to r = O(log |k|/|log log |k||^(2/3))." Hence this fit suggests a(n) >> exp(n (log n)^(1/3)) where >> is the Vinogradov symbol. - Charles R Greathouse IV, Sep 10 2013
The curves for k and -27*k are isogenous (as Noam Elkies points out---see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013
Womack (2003) gives further upper bounds: a(7) <= 47550317, a(8) <= 1632201497, a(9) <= 185418133372, a(10) <= 68513487607153. - M. F. Hasler, Jul 01 2024
The three questions for arbitrary k, positive k, and negative k are not very far from each other because the curves for k and -27k are related by a 3-isogeny and therefore have the same rank. It would be most natural to ask for the minimal |k| for k of either sign [see A373795]. - Noam D. Elkies, Jul 02 2024
a(16) <= 1160221354461565256631205207888 (Elkies, ANTS-XVI, 2024). The same article also establishes the existence of a value of k which has rank >= 17. - N. J. A. Sloane, Jul 05 2024

Examples

			a(12) <= 27*A031508(12) <= 27*6533891544658786928 = 176415071705787247056 (from Quer 1987 and Womack). - _Jonathan Sondow_, Sep 10 2013
		

References

  • Noam D. Elkies, Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds, 2024 Algorithmic Number Theory Symposium, ANTS-XVI, MIT, July 2024.

Programs

  • PARI
    {A031507(n)=for(k=1, oo, ellrank(ellinit([0, k]))[1]==n && return(k))} \\ Use ellanalyticrank() for PARI version < 2.14. - M. F. Hasler, Jul 01 2024

Formula

a(n) <= 27*A031508(n) and A031508(n) <= 27*a(n). - Jonathan Sondow, Sep 10 2013

Extensions

Definition clarified by Jonathan Sondow, Oct 26 2013
Escape clause added to definition by N. J. A. Sloane, Jun 29 2024, because, as John Cremona reminds me, it is not known if k always exists.

A014182 Expansion of e.g.f. exp(1-x-exp(-x)).

Original entry on oeis.org

1, 0, -1, 1, 2, -9, 9, 50, -267, 413, 2180, -17731, 50533, 110176, -1966797, 9938669, -8638718, -278475061, 2540956509, -9816860358, -27172288399, 725503033401, -5592543175252, 15823587507881, 168392610536153, -2848115497132448, 20819319685262839
Offset: 0

Keywords

Comments

E.g.f. A(x) = y satisfies (y + y' + y'') * y - y'^2 = 0. - Michael Somos, Mar 11 2004
The 10-adic sum: B(n) = Sum_{k>=0} k^n*k! simplifies to: B(n) = A014182(n)*B(0) + A014619(n) for n>=0, where B(0) is the 10-adic sum of factorials (A025016); a result independent of base. - Paul D. Hanna, Aug 12 2006
Equals row sums of triangle A143987 and (shifted) = right border of A143987. [Gary W. Adamson, Sep 07 2008]
From Gary W. Adamson, Dec 31 2008: (Start)
Equals the eigensequence of the inverse of Pascal's triangle, A007318.
Binomial transform shifts to the right: (1, 1, 0, -1, 1, 2, -9, ...).
Double binomial transform = A109747. (End)
Convolved with A154107 = A000110, the Bell numbers. - Gary W. Adamson, Jan 04 2009

Examples

			G.f. = 1 - x^2 + x^3 + 2*x^4 - 9*x^5 + 9*x^6 + 50*x^7 - 267*x^8 + 413*x^9 + ...
		

Crossrefs

Essentially same as A000587. See also A014619.
Cf. A025016.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[1-x-Exp[-x]],{x,0,nn}],x] Range[0,nn]!]  (* Harvey P. Dale, Jan 15 2012 *)
    a[ n_] := SeriesCoefficient[ (1 - Sum[ k / Pochhammer[ 1/x + 1, k], {k, n}]) / (1 - x), {x, 0, n} ]; (* Michael Somos, Nov 07 2014 *)
  • PARI
    {a(n)=sum(j=0,n,(-1)^(n-j)*Stirling2(n+1,j+1))}
    {Stirling2(n,k)=(1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n)} \\ Paul D. Hanna, Aug 12 2006
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - x - exp( -x + x * O(x^n))), n))} /* Michael Somos, Mar 11 2004 */
    
  • Sage
    def A014182_list(len):  # len>=1
        T = [0]*(len+1); T[1] = 1; R = [1]
        for n in (1..len-1):
            a,b,c = 1,0,0
            for k in range(n,-1,-1):
                r = a - k*b - (k+1)*c
                if k < n : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A014182_list(27)  # Peter Luschny, Nov 01 2012

Formula

E.g.f.: exp(1-x-exp(-x)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n+1,k+1). - Paul D. Hanna, Aug 12 2006
A000587(n+1) = -a(n). - Michael Somos, May 12 2012
G.f.: 1/x/(U(0)-x) -1/x where U(k)= 1 - x + x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2012
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+k*x+x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 17 2013
G.f.: G(0)/(1+x)-1 where G(k) = 1 + 1/(1 + k*x - x*(1+k*x)*(1+k*x+x)/(x*(1+k*x+x) + (1+k*x+2*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: S-1 where S = Sum_{k>=0} (2 + x*k)*x^k/Product_{i=0..k} (1+x+x*i). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: G(0)*x^2/(1+x)/(1+2*x) + 2/(1+x) - 1 where G(k) = 1 + 2/(x + k*x - x^3*(k+1)*(k+2)/(x^2*(k+2) + 2*(1+k*x+3*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: 1/(x*Q(0)) -1/x, where Q(k) = 1 - x/(1 + (k+1)*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013
G.f.: G(0)/(1-x)/x - 1/x, where G(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (x*k + 1 - x)*(x*k + 1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 06 2014
G.f.: (1 - Sum_{k>0} k * x^k / ((1 + x) * (1 + 2*x) + ... (1 + k*x))) / (1 - x). - Michael Somos, Nov 07 2014
a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k + 1)^n / k!. - Ilya Gutkovskiy, Dec 20 2019

A031508 a(n) = smallest k > 0 such that the elliptic curve y^2 = x^3 - k has rank n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 11, 174, 2351, 28279, 975379
Offset: 0

Keywords

Comments

See A031507 for the smallest k>0 such that the elliptic curve y^2 = x^3 + k has rank n. - Jonathan Sondow, Sep 06 2013
See A060951 for the rank of y^2 = x^3 - n. - Jonathan Sondow, Sep 10 2013
Gebel, Pethö, & Zimmer: "One experimental observation derived from the tables is that the rank r of Mordell's curves grows according to r = O(log |k|/|log log |k||^(2/3))." Hence this fit suggests a(n) >> exp(n (log n)^(1/3)) where >> is the Vinogradov symbol. - Charles R Greathouse IV, Sep 10 2013
a(7) <= 56877643. a(8) <= 2520963512. a(9) <= 463066403167. a(10) <= 56736325657288. a(11) <= 46111487743732324. a(12) <= 6533891544658786928. See Table 3.3 in [Womack 2003]. - Jose Aranda, Jun 30 2024
The three questions for arbitrary k, positive k, and negative k are not very far from each other because the curves for k and -27k are related by a 3-isogeny and therefore have the same rank. It would be most natural to ask for the minimal |k| for k of either sign [see A373795]. - Noam D. Elkies, Jul 02 2024
a(16) <= 1160221354461565256631205207888 (Elkies, ANTS-XVI, 2024). The same article also establishes the existence of a value of k which has rank >= 17. - N. J. A. Sloane, Jul 05 2024

Examples

			From _M. F. Hasler_, Jul 01 2024: (Start)
Sequence A060951 = (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, ...) gives the analytic rank of the elliptic curve y^2 = x^3 - k for k = 1, 2, 3, ...
We can see that:
  - the smallest k that gives rank 0 is k = 1 = a(0);
  - the smallest k that gives rank 1 is k = 2 = a(1);
  - the smallest k that gives rank 2 is k = 11 = a(2); etc. (End)
		

References

  • Noam D. Elkies, Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds, 2024 Algorithmic Number Theory Symposium, ANTS-XVI, MIT, July 2024.

Programs

  • PARI
    {a(n) = my(k=1); while(ellanalyticrank(ellinit([0, 0, 0, 0, -k]))[1]<>n, k++); k} \\ Seiichi Manyama, Aug 24 2019
    
  • PARI
    {A031508(n)=for(k=1,oo, ellrank(ellinit([0, -k]))[1]==n && return(k))} \\ M. F. Hasler, Jul 01 2024

Formula

a(n) = min { k >= 1 | A060951(k) == n }. - M. F. Hasler, Jul 01 2024

Extensions

Definition clarified by Jonathan Sondow, Oct 26 2013.
Escape clause added to definition by N. J. A. Sloane, Jun 29 2024, because, as John Cremona reminds me, it is not known if k always exists.