cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A040027 The Gould numbers.

Original entry on oeis.org

1, 1, 3, 9, 31, 121, 523, 2469, 12611, 69161, 404663, 2512769, 16485691, 113842301, 824723643, 6249805129, 49416246911, 406754704841, 3478340425563, 30845565317189, 283187362333331, 2687568043654521, 26329932233283223, 265946395403810289, 2766211109503317451
Offset: 0

Views

Author

Keywords

Comments

Number of permutations beginning with 21 and avoiding 1-23. - Ralf Stephan, Apr 25 2004
Originally defined as main diagonal of an array of binomial recurrence coefficients (see Gould and Quaintance). Also second-from-right diagonal of triangle A121207.
Starting (1, 3, 9, 31, 121, ...) = row sums of triangle A153868. - Gary W. Adamson, Jan 03 2009
Equals eigensequence of triangle A074909 (reflected). - Gary W. Adamson, Apr 10 2009
The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m=>-1, is related to the sequence given above. For m=-1 this series dates back to Euler. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A073003 Gompertz's constant and A000110 the Bell numbers, see A163940; A040027(m = -1) = 0. - Johannes W. Meijer, Oct 16 2009
Compare the o.g.f. to the o.g.f. B(x) of the Bell numbers, where B(x) = 1 + x*B(x/(1-x))/(1-x). - Paul D. Hanna, Mar 23 2012
a(n) is the number of set partitions of {1,2,...,n+1} in which the last block is a singleton: the blocks are arranged in order of their least element. An example is given below. - Peter Bala, Dec 17 2014

Examples

			a(3) = 9: Arranging the blocks of the 15 set partitions of {1,2,3,4} in order of their least element we find 9 set partitions for which the last block is a singleton, namely, 123|4, 124|3, 134|2, 1|24|3, 1|23|4, 12|3|4, 13|2|4, 14|2|3, and 1|2|3|4. - _Peter Bala_, Dec 17 2014
		

Crossrefs

Left-hand border of triangle A046936. Cf. also A011971, A014619, A298804.
Cf. A153868. - Gary W. Adamson, Jan 03 2009
Cf. A074909. - Gary W. Adamson, Apr 10 2009
Row sums of A163940. - Johannes W. Meijer, Oct 16 2009
Cf. A108458 (row sums), A124496 (column 1).

Programs

  • Haskell
    a040027 n = head $ a046936_row (n + 1)  -- Reinhard Zumkeller, Jan 01 2014
    
  • Maple
    A040027 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n,k-1)*procname(n-k),k=1..n) ;
        end if;
    end proc: # Johannes W. Meijer, Oct 16 2009
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 22}]  (* Jean-François Alcover, Jul 02 2013 *)
    Rest[CoefficientList[Assuming[Element[x, Reals], Series[E^E^x*(ExpIntegralEi[-E^x] - ExpIntegralEi[-1]), {x, 0, 20}]], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*subst(A,x,x/(1-x+x*O(x^n)))/(1-x)^2);polcoeff(A,n)} /* Paul D. Hanna, Mar 23 2012 */
    
  • Python
    # The function Gould_diag is defined in A121207.
    A040027_list = lambda size: Gould_diag(2, size)
    print(A040027_list(24)) # Peter Luschny, Apr 24 2016

Formula

a(n) = b(n-2), n>1, b(n) = Sum_{k = 1..n} binomial(n, k-1)*b(n-k), b(0) = 1. - Vladeta Jovovic, Apr 28 2001
E.g.f. satisfies A'(x) = exp(x)*A(x)+1. - N. J. A. Sloane
With offset 0, e.g.f.: x + exp(exp(x)) * Integral_{t=0..x} t*exp(-exp(t)+t) dt (fits the recurrence up to n=215). - Ralf Stephan, Apr 25 2004
Recurrence: a(0)=1, a(1)=1, for n > 1, a(n) = n + Sum_{j=1..n-1} binomial(n, j+1)*a(j). - Jon Perry, Apr 26 2005
O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^2. - Paul D. Hanna, Mar 23 2012
From Peter Bala, Dec 17 2014: (Start)
Starting from A(x) = 1 + O(x) (big Oh notation) we can get a series expansion for the o.g.f. by repeatedly applying the above functional equation of Hanna: A(x) = 1 + O(x) = 1 + x/(1-x)^2 + O(x^2) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + O(x^3) = ... = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + x^3/((1-x)*(1-2*x)*(1-3*x)^2) + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)^2) + ....
a(n) = Sum_{k = 0..n} ( Sum_{j = k..n} Stirling2(j,k)*k^(n-j) ).
Row sums of A108458. First column of A124496. (End)
Conjecture: a(n) = Sum_{k = 0..n} A058006(k)*A048993(n+1, k+1) - Velin Yanev, Aug 31 2021

Extensions

Entry revised by N. J. A. Sloane, Dec 11 2006
Gould reference updated by Johannes W. Meijer, Aug 02 2009
Don Knuth, Jan 29 2018, suggested that this sequence should be named after H. W. Gould. - N. J. A. Sloane, Jan 30 2018

A014182 Expansion of e.g.f. exp(1-x-exp(-x)).

Original entry on oeis.org

1, 0, -1, 1, 2, -9, 9, 50, -267, 413, 2180, -17731, 50533, 110176, -1966797, 9938669, -8638718, -278475061, 2540956509, -9816860358, -27172288399, 725503033401, -5592543175252, 15823587507881, 168392610536153, -2848115497132448, 20819319685262839
Offset: 0

Views

Author

Keywords

Comments

E.g.f. A(x) = y satisfies (y + y' + y'') * y - y'^2 = 0. - Michael Somos, Mar 11 2004
The 10-adic sum: B(n) = Sum_{k>=0} k^n*k! simplifies to: B(n) = A014182(n)*B(0) + A014619(n) for n>=0, where B(0) is the 10-adic sum of factorials (A025016); a result independent of base. - Paul D. Hanna, Aug 12 2006
Equals row sums of triangle A143987 and (shifted) = right border of A143987. [Gary W. Adamson, Sep 07 2008]
From Gary W. Adamson, Dec 31 2008: (Start)
Equals the eigensequence of the inverse of Pascal's triangle, A007318.
Binomial transform shifts to the right: (1, 1, 0, -1, 1, 2, -9, ...).
Double binomial transform = A109747. (End)
Convolved with A154107 = A000110, the Bell numbers. - Gary W. Adamson, Jan 04 2009

Examples

			G.f. = 1 - x^2 + x^3 + 2*x^4 - 9*x^5 + 9*x^6 + 50*x^7 - 267*x^8 + 413*x^9 + ...
		

Crossrefs

Essentially same as A000587. See also A014619.
Cf. A025016.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[1-x-Exp[-x]],{x,0,nn}],x] Range[0,nn]!]  (* Harvey P. Dale, Jan 15 2012 *)
    a[ n_] := SeriesCoefficient[ (1 - Sum[ k / Pochhammer[ 1/x + 1, k], {k, n}]) / (1 - x), {x, 0, n} ]; (* Michael Somos, Nov 07 2014 *)
  • PARI
    {a(n)=sum(j=0,n,(-1)^(n-j)*Stirling2(n+1,j+1))}
    {Stirling2(n,k)=(1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n)} \\ Paul D. Hanna, Aug 12 2006
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - x - exp( -x + x * O(x^n))), n))} /* Michael Somos, Mar 11 2004 */
    
  • Sage
    def A014182_list(len):  # len>=1
        T = [0]*(len+1); T[1] = 1; R = [1]
        for n in (1..len-1):
            a,b,c = 1,0,0
            for k in range(n,-1,-1):
                r = a - k*b - (k+1)*c
                if k < n : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A014182_list(27)  # Peter Luschny, Nov 01 2012

Formula

E.g.f.: exp(1-x-exp(-x)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n+1,k+1). - Paul D. Hanna, Aug 12 2006
A000587(n+1) = -a(n). - Michael Somos, May 12 2012
G.f.: 1/x/(U(0)-x) -1/x where U(k)= 1 - x + x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2012
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+k*x+x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 17 2013
G.f.: G(0)/(1+x)-1 where G(k) = 1 + 1/(1 + k*x - x*(1+k*x)*(1+k*x+x)/(x*(1+k*x+x) + (1+k*x+2*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: S-1 where S = Sum_{k>=0} (2 + x*k)*x^k/Product_{i=0..k} (1+x+x*i). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: G(0)*x^2/(1+x)/(1+2*x) + 2/(1+x) - 1 where G(k) = 1 + 2/(x + k*x - x^3*(k+1)*(k+2)/(x^2*(k+2) + 2*(1+k*x+3*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
G.f.: 1/(x*Q(0)) -1/x, where Q(k) = 1 - x/(1 + (k+1)*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013
G.f.: G(0)/(1-x)/x - 1/x, where G(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (x*k + 1 - x)*(x*k + 1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 06 2014
G.f.: (1 - Sum_{k>0} k * x^k / ((1 + x) * (1 + 2*x) + ... (1 + k*x))) / (1 - x). - Michael Somos, Nov 07 2014
a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k + 1)^n / k!. - Ilya Gutkovskiy, Dec 20 2019

A163940 Triangle related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m >= -1.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 9, 17, 4, 0, 1, 14, 52, 49, 5, 0, 1, 20, 121, 246, 129, 6, 0, 1, 27, 240, 834, 1039, 321, 7, 0, 1, 35, 428, 2250, 5037, 4083, 769, 8, 0, 1, 44, 707, 5214, 18201, 27918, 15274, 1793, 9, 0, 1, 54, 1102, 10829, 54111, 133530, 145777, 55152, 4097, 10, 0
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The divergent series g(x,m) = Sum_{k >= 1} (-1)^(k+1)*k^m*k!*x^k, m >= -1, are related to the higher order exponential integrals E(x,m,n=1), see A163931.
Hardy, see the link below, describes how Euler came to the rather surprising conclusion that g(x,-1) = exp(1/x)*Ei(1,1/x) with Ei(1,x) = E(x,m=1,n=1). From this result it follows inmediately that g(x,0) = 1 - g(x,-1). Following in Euler's footsteps we discovered that g(x,m) = (-1)^(m) * (M(x,m)*x - ST(x,m)* Ei(1,1/x) * exp(1/x))/x^(m+1), m => -1.
So g(x=1,m) = (-1)^m*(A040027(m) - A000110 (m+1)*A073003), with A040027(m = -1) = 0. We observe that A073003 = - exp(1)*Ei(-1) is Gompertz's constant, A000110 are the Bell numbers and A040027 was published a few years ago by Gould.
The polynomial coefficients of the M(x,m) = Sum_{k = 0..m} a(m,k) * x^k, for m >= 0, lead to the triangle given above. We point out that M(x,m=-1) = 0.
The polynomial coefficients of the ST(x,m) = Sum_{k = 0..m+1} S2(m+1, k) * x^k, m >= -1, lead to the Stirling numbers of the second kind, see A106800.
The formulas that generate the coefficients of the left hand columns lead to the Minkowski numbers A053657. We have a closer look at them in A163972.
The right hand columns have simple generating functions, see the formulas. We used them in the first Maple program to generate the triangle coefficients (n >= 0 and 0 <= k <= n). The second Maple program calculates the values of g(x,m) for m >= -1, at x=1.

Examples

			The first few triangle rows are:
  [1]
  [1, 0]
  [1, 2, 0]
  [1, 5, 3, 0]
  [1, 9, 17, 4, 0]
  [1, 14, 52, 49, 5, 0]
The first few M(x,m) are:
  M(x,m=0) = 1
  M(x,m=1) = 1 + 0*x
  M(x,m=2) = 1 + 2*x + 0*x^2
  M(x,m=3) = 1 + 5*x + 3*x^2 + 0*x^3
The first few ST(x,m) are:
  ST(x,m=-1) = 1
  ST(x,m=0) = 1 + 0*x
  ST(x,m=1) = 1 + 1*x + 0*x^2
  ST(x,m=2) = 1 + 3*x + x^2 + 0*x^3
  ST(x,m=3) = 1 + 6*x + 7*x^2 + x^3 + 0*x^4
The first few g(x,m) are:
  g(x,-1) = (-1)*(- (1)*Ei(1,1/x)*exp(1/x))/x^0
  g(x,0) = (1)*((1)*x - (1)*Ei(1,1/x)*exp(1/x))/x^1
  g(x,1) = (-1)*((1)*x - (1+ x)*Ei(1,1/x)*exp(1/x))/x^2
  g(x,2) = (1)*((1+2*x)*x - (1+3*x+x^2)*Ei(1,1/x)*exp(1/x))/x^3
  g(x,3) = (-1)*((1+5*x+3*x^2)*x - (1+6*x+7*x^2+x^3)*Ei(1,1/x)*exp(1/x))/x^4
		

Crossrefs

The row sums equal A040027 (Gould).
A000007, A000027, A000337, A163941 and A163942 are the first five right hand columns.
A000012, A000096, A163943 and A163944 are the first four left hand columns.
Cf. A163931, A163972, A106800 (Stirling2), A000110 (Bell), A073003 (Gompertz), A053657 (Minkowski), A014619.

Programs

  • Maple
    nmax := 10; for p from 1 to nmax do Gf(p) := convert(series(1/((1-(p-1)*x)^2*product((1-k1*x), k1=1..p-2)), x, nmax+1-p), polynom); for q from 0 to nmax-p do a(p+q-1, q) := coeff(Gf(p), x, q) od: od: seq(seq(a(n, k), k=0..n), n=0..nmax-1);
    # End program 1
    nmax1:=nmax; A040027 := proc(n): if n = -1 then 0 elif n= 0 then 1 else add(binomial(n, k1-1)*A040027(n-k1), k1 = 1..n) fi: end: A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i) * A000110(n-1-i), i=0..n-1); fi; end: A073003 := - exp(1) * Ei(-1): for n from -1 to nmax1 do g(1, n) := (-1)^n * (A040027(n) - A000110(n+1) * A073003) od;
    # End program 2
  • Mathematica
    nmax = 11;
    For[p = 1, p <= nmax, p++, gf = 1/((1-(p-1)*x)^2*Product[(1-k1*x), {k1, 1, p-2}]) + O[x]^(nmax-p+1) // Normal; For[q = 0, q <= nmax-p, q++, a[p+q-1, q] = Coefficient[gf, x, q]]];
    Table[a[n, k], {n, 0, nmax-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019, from 1st Maple program *)

Formula

The generating functions of the right hand columns are Gf(p, x) = 1/((1 - (p-1)*x)^2 * Product_{k = 1..p-2} (1-k*x) ); Gf(1, x) = 1. For the first right hand column p = 1, for the second p = 2, etc..
From Peter Bala, Jul 23 2013: (Start)
Conjectural explicit formula: T(n,k) = Stirling2(n,n-k) + (n-k)*Sum_{j = 0..k-1} (-1)^j*Stirling2(n, n+1+j-k)*j! for 0 <= k <= n.
The n-th row polynomial R(n,x) appears to satisfy the recurrence equation R(n,x) = n*x^(n-1) + Sum_{k = 1..n-1} binomial(n,k+1)*x^(n-k-1)*R(k,x). The row polynomials appear to have only real zeros. (End)

Extensions

Edited by Johannes W. Meijer, Sep 23 2012

A025016 Final digits of !n = Sum_{i=0..n} i! (A003422) for very large n, read from right.

Original entry on oeis.org

4, 1, 3, 0, 4, 9, 0, 2, 4, 0, 2, 9, 8, 2, 5, 6, 3, 3, 2, 4, 4, 6, 5, 5, 2, 5, 0, 9, 3, 0, 5, 0, 1, 3, 9, 5, 3, 2, 3, 4, 0, 8, 4, 9, 9, 7, 0, 1, 1, 2, 6, 8, 3, 7, 4, 8, 6, 8, 7, 4, 9, 7, 4, 7, 4, 2, 2, 9, 0, 0, 4, 3, 3, 0, 5, 6, 5, 8, 6, 5, 0, 0, 2, 6, 6, 5, 1, 5, 9, 7, 8, 8, 1, 6, 2, 0, 2, 8, 1, 2, 1, 3, 7, 6, 1, 1, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Reversed digits of 10-adic sum of all factorials.
More generally, the 10-adic sum: B(n) = Sum_{k>=0} k^n*k! is given by: B(n) = A014182(n)*B(0) + A014619(n) for n>=0, where B(0) is the 10-adic sum of factorials (this constant). - Paul D. Hanna, Aug 12 2006

Examples

			!20 = 256132749111820314, !30 = 16158688114800553828940314 ... .
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{x, f=1}, While[Mod[f!, 10^(n+1)]>0, f += 1]; x = Sum[ Mod[k!, 10^(n+1)], {k, 0, f}]; Quotient[10*Mod[x, 10^(n+1)], 10^(n+1)]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 18 2015, after Paul D. Hanna *)
  • PARI
    {a(n)=local(x,f=1);while(f!%10^(n+1)>0,f+=1); x=sum(k=0,f,k!%10^(n+1));(10*(x%10^(n+1)))\10^(n+1)} \\ Paul D. Hanna, Aug 12 2006

A346053 G.f. A(x) satisfies: A(x) = 1 - x * A(x/(1 - x)) / (1 - x)^3.

Original entry on oeis.org

1, -1, -2, 0, 10, 25, -11, -301, -1040, -60, 17770, 95359, 146701, -1513837, -14210258, -53101500, 91834402, 2739189073, 19172894377, 46384729811, -498471972128, -7229201676480, -45007184571062, -40076612769641, 2435999270437801, 30321258115161275, 180120147363157438
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = 1 - x A[x/(1 - x)]/(1 - x)^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n + 1, k + 2] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
  • SageMath
    @CachedFunction
    def a(n): # a = A346053
        if (n==0): return 1
        else: return (-1)*sum(binomial(n+1, k+2)*a(k) for k in range(n))
    [a(n) for n in range(51)] # G. C. Greubel, Dec 01 2022

Formula

a(n+1) = -Sum_{k=0..n} binomial(n+2,k+2) * a(k).

A346059 G.f. A(x) satisfies: A(x) = 1 - x * A(x/(1 - x)) / (1 - x)^4.

Original entry on oeis.org

1, -1, -3, -2, 15, 62, 56, -566, -3318, -6241, 33022, 330939, 1211873, -1330691, -47459905, -310788796, -675462411, 7151217040, 93213242926, 515144576280, 122725585740, -27551616750331, -296570472858772, -1477869678576483, 3416889475636695, 146832017085068163, 1522825949942199537
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = 1 - x A[x/(1 - x)]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n + 2, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]

Formula

a(n+1) = -Sum_{k=0..n} binomial(n+3,k+3) * a(k).

A346060 G.f. A(x) satisfies: A(x) = 1 - x * A(x/(1 - x)) / (1 - x)^5.

Original entry on oeis.org

1, -1, -4, -5, 19, 119, 226, -789, -7747, -25333, 29428, 826059, 4651651, 7008499, -108045466, -1124213961, -4968432059, 6515205811, 300350438716, 2561696929271, 9034737779711, -58377397309001, -1213955186657474, -9784487206914505, -27228229386096731, 417997375131879519
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1 - x A[x/(1 - x)]/(1 - x)^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n + 3, k + 4] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]

Formula

a(n+1) = -Sum_{k=0..n} binomial(n+4,k+4) * a(k).

A352865 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-k,k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, -1, -4, -5, 6, 36, 46, -101, -515, -506, 2554, 9991, 3067, -79915, -227056, 205681, 2841708, 5134140, -18296153, -107927240, -66578269, 1174691649, 4059143386, -4667894370, -69377504739, -126787267800, 669710503012, 3835079736835, 475781902203
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^k Binomial[n - k, k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 30}]
    nmax = 30; A[] = 0; Do[A[x] = 1 + x A[x/(1 + x^2)]/(1 + x^2)^2 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 + x^2)) / (1 + x^2)^2.

A213953 Triangle by rows, inverse of A208891.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, -2, 5, 0, -3, -1, 1, -9, 5, 10, -2, -4, -1, 1, -9, -21, 25, 15, -5, -5, -1, 1, 50, -105, -11, 62, 19, -9, -6, -1, 1, 267, -141, -301, 56, 119, 21, -14, -7, -1, 1, 413, 777
Offset: 0

Views

Author

Gary W. Adamson, Jun 26 2012

Keywords

Examples

			Triangle starts:
1;
-1, 1
0, -1, 1
1, -1, -1, 1;
1, 1, -2, -1, 1;
-2, 5, 0, -3, -1, 1;
-9, 5, 10, -2, -4, -1, 1;
-9, -21, 25, 15, -5, -5, -1, 1;
50, -105, -11, 62, 19, -9, -6, -1, 1;
267, -141, -301, 56, 119, 21, -14, -7, -1, 1;
413, 777, -1040, -566, 226, 198, 20, -20, -8, -1, 1;
...
		

Crossrefs

Cf. A208891, A000587 (first column), A014619 (2nd column), A080956 (4th subdiagonal).

Programs

  • Maple
    A208891 := proc(n,k)
        if n <0 or k<0 or k>n then
                0;
        elif n = k then
                1 ;
        else
                binomial(n-1,k) ;
        end if;
    end proc:
    A259456 := proc(n)
        local A, row, col ;
        A := Matrix(n, n) ;
        for row from 1 to n do
            for col from 1 to n do
                A[row, col] := A208891(row-1,col-1) ;
            end do:
        end do:
        LinearAlgebra[MatrixInverse](A) ;
    end proc:
    A259456(20) ; # R. J. Mathar, Jul 21 2015

Formula

Inverse of triangle A208891, Pascal's triangle matrix with an appended right border of 1's.

A308024 G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 + x)) * (A(x/(1 + x)) + A(x^2/(1 + x)^2) + A(x^3/(1 + x)^3) + ...)).

Original entry on oeis.org

1, 1, 0, -2, 4, 0, -24, 68, 20, -936, 3800, -2172, -64120, 417752, -959852, -5464092, 68816400, -328509112, 8361828, 13473157664, -119068537700, 448312242012, 1868795480588, -43889516937276, 348963546501928, -1006637409183472, -12316833304447344, 217304253286437480
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 28; A[] = 0; Do[A[x] = x (1 + 1/(1 + x) Sum[A[x^k/(1 + x)^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := a[n] = Sum[(-1)^(n - k - 1) Binomial[n - 1, k] Sum[a[d], {d, Divisors[k]}], {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 28}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k) * Sum_{d|k} a(d).
Showing 1-10 of 12 results. Next