cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352864 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k,k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 34, 84, 230, 653, 1893, 5794, 18080, 58345, 193761, 657959, 2295398, 8177305, 29775086, 110676222, 419169483, 1617868052, 6353518921, 25376986471, 103017630200, 424704411564, 1777458163195, 7546547411488, 32490058003914, 141774055915497, 626739661952337
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - k, k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 30}]
    nmax = 30; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x^2)]/(1 - x^2)^2 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x^2)) / (1 - x^2)^2.

A360900 G.f. satisfies A(x) = 1 + x/(1 + x^3)^2 * A(x/(1 + x^3)).

Original entry on oeis.org

1, 1, 1, 1, -1, -4, -8, -10, 2, 40, 115, 174, 22, -736, -2495, -4276, -920, 20593, 75011, 135814, 17524, -788871, -2909061, -5248648, 623274, 38581252, 138036877, 235567666, -134440249, -2284840691, -7698637124, -11745925435, 15869626983, 157479613343
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, (-1)^j*binomial(i-2*j, j)*v[i-3*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} (-1)^k * binomial(n-2*k,k) * a(n-1-3*k).

A360901 G.f. satisfies A(x) = 1 + x/(1 + x^4)^2 * A(x/(1 + x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, -1, -4, -8, -13, -16, -3, 39, 126, 273, 411, 283, -619, -3149, -8201, -14496, -14368, 12984, 109920, 329552, 655436, 785583, -312525, -5009034, -16789151, -36433571, -48990090, 6965306, 286109557, 1044072824, 2414264953, 3490255449, -41486331
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, (-1)^j*binomial(i-3*j, j)*v[i-4*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (-1)^k * binomial(n-3*k,k) * a(n-1-4*k).
Showing 1-3 of 3 results.