cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A169764 Number of closed Knight's tours on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 176, 0, 1536, 0, 15424, 0, 147728, 0, 1448416, 0, 14060048, 0, 136947616, 0, 1332257856, 0, 12965578752, 0, 126169362176, 0, 1227776129152, 0, 11947846468608, 0, 116266505653888, 0, 1131418872918784, 0, 11010065269439104, 0, 107141489725900544
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

a(2n) = A070030(n), a(2n+1) = 0.
A070030 is the main entry for this sequence. See that entry for much more information.

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(16*z^10 +80*z^12 -544*z^14 -1856*z^16 +8080*z^18 +9856*z^20 -50864*z^22 -64*z^24 +152576*z^26 -130816*z^28 -214272*z^30 +245760*z^32 +222208*z^34 +44544*z^36 -53248*z^38 -352256*z^40 +81920*z^42 +32768*z^44) / (1 -6*z^2 -64*z^4 +200*z^6 +1000*z^8 -3016*z^10 -3488*z^12 +24256*z^14 -23776*z^16 -104168*z^18 +203408*z^20 +184704*z^22 -443392*z^24 -14336*z^26 +151296*z^28 -145920*z^30 +263424*z^32 -317440*z^34 -36864*z^36 +966656*z^38 -573440*z^40 -131072*z^42), {z,0,50}], z] (* Harvey P. Dale, Feb 12 2013 *)

Formula

Asymptotic value .0001899*3.11949^n when n is even.
Generating function: (16*z^10 + 80*z^12 - 544*z^14 - 1856*z^16 + 8080*z^18 + 9856*z^20 - 50864*z^22 - 64*z^24 + 152576*z^26 - 130816*z^28 - 214272*z^30 + 245760*z^32 + 222208*z^34 + 44544*z^36 - 53248*z^38 - 352256*z^40 + 81920*z^42 + 32768*z^44)/(1 - 6*z^2 - 64*z^4 + 200*z^6 + 1000*z^8 - 3016*z^10 - 3488*z^12 + 24256*z^14 - 23776*z^16 - 104168*z^18 + 203408*z^20 + 184704*z^22 - 443392*z^24 - 14336*z^26 + 151296*z^28 - 145920*z^30 + 263424*z^32 - 317440*z^34 - 36864*z^36 + 966656*z^38 - 573440*z^40 - 131072*z^42).

A169777 Number of geometrically distinct open knight's tours of a 3 X n chessboard.

Original entry on oeis.org

3, 0, 0, 14, 104, 146, 773, 2698, 14350, 32296, 161714, 460022, 2159794, 5851548, 26468357, 76442996, 330719293, 965759972, 4056479056, 12186078360, 49668414086, 151760518296, 604396415979, 1879966906486, 7330203447133, 23126786408904, 88609897281582
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The three distinct 3x4 tours were published by Euler in Memoires Acad. Roy. Sci. (Berlin, 1759), 310-337.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = A169696(n)/4 + A169776(n)/2.

A169770 Number of open knight's tour diagrams of a 3 X n chessboard that have "type X": both endpoints occur in the same column.

Original entry on oeis.org

4, 0, 0, 0, 80, 40, 368, 352, 5296, 3744, 48656, 40208, 523808, 415488, 5270976, 4333504, 54215264, 44497728, 551297184, 458337984, 5613555008, 4691821600, 56981627840, 47988689152, 577641089664, 489273948160, 5845628996352
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

Asymptotic value 0.000169*n*3.11949^n when n is even, 0.0000526*n*3.11949^n when n is odd.

A383660 Number of closed knight's tours in the first 2n cells of a 3 X ceiling(2n/3) board.

Original entry on oeis.org

4, 0, 4, 24, 16, 56, 306, 176, 456, 2632, 1536, 4828, 26788, 15424, 44952, 254288, 147728, 448032, 2502568, 1448416, 4310048, 24228704, 14060048, 42195584, 236335248, 136947616, 409403328, 2297294496, 1332257856, 3989883552, 22366625344, 12965578752, 38798663104, 217604833360, 126169362176
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 3, the rightmost column has only 2n mod 3 rows (see example).

Examples

			For n=11 the a(11)=4 solutions are
  1  4  7 10 17 20 15 12
  6  9  2 21 14 11 18
  3 22  5  8 19 16 13    ;
  1  4  7 14 11 20  9 18
  6 15  2 21  8 17 12
  3 22  5 16 13 10 19    ;
  1  4 21 12 15  6 17  8
 20 11  2  5 18  9 14
  3 22 19 10 13 16  7    ;
  1  4 21 18  9  6 11 14
 20 17  2  5 12 15  8
  3 22 19 16  7 10 13    .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(3n) = A070030(n).

A175881 Number of closed Knight's tours on a 6 X n board.

Original entry on oeis.org

0, 0, 0, 0, 8, 9862, 1067638, 55488142, 3374967940, 239187240144, 15360134570696, 964730606632516, 61989683445413228, 4005716717182224826, 255967892553030600920, 16378998506224697063588, 1050504687249683771795632, 67351449674771471216148786, 4314151246752166099728445868
Offset: 1

Views

Author

Johan de Ruiter, Dec 05 2010

Keywords

Comments

Could you please say how you calculated these numbers? - N. J. A. Sloane, Dec 05 2010?
I kept track of pairs of loose ends within the two rightmost columns of a 6 X n board, assuming that everything to the left of these two columns is fully connected and that there are no cycles (or one if this is a final state). Next I added a new column and connected it to the rightmost two columns in all ways such that there are no cycles formed(or one if this results in a final state) and the leftmost column in the current state is fully connected and can be dropped. From this followed a transition matrix. I can provide a reference to my writeup once it is completed and has been accepted by my supervisor. - Johan de Ruiter, Dec 05 2010

Examples

			The smallest 6 X n board admitting a closed Knight's tour is the 6 X 5, on which there are 8 such tours.
		

Crossrefs

A070030 deals with 3 X 2n boards, A175855 with 5 X 2n boards.
Cf. A383662.

Formula

a(n) = A383662(3n). - Don Knuth, May 05 2025

A169765 Number of closed knight's tour diagrams of a 3 X n chessboard that are symmetric with respect to left-right reflection about a vertical axis.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 24, 0, 0, 0, 276, 0, 0, 0, 2604, 0, 0, 0, 25736, 0, 0, 0, 248816, 0, 0, 0, 2424608, 0, 0, 0, 23581056, 0, 0, 0, 229513584, 0, 0, 0, 2233386048, 0, 0, 0, 21733496960, 0, 0, 0, 211495383968, 0, 0, 0, 2058092298080
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The first example, for n=10, was exhibited by Ernest Bergholt in British Chess Magazine 1918, page 74.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169765(n)=0 unless n mod 4 = 2. And if n mod = 2, A169765(n) = A169765(n) + A169767(n).
Generating function: (2*(2*z^10 - 62*z^18 + 106*z^22 + 624*z^26 - 2560*z^30 - 2464*z^34 + 20640*z^38 + 11112*z^42 - 70304*z^46 - 75840*z^50 + 94976*z^54 + 206528*z^58 - 25216*z^62 - 60672*z^66 - 70656*z^70 - 168960*z^74 + 24576*z^78 + 81920*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).

Extensions

More terms from Alois P. Heinz, Nov 26 2010

A158074 Number of (directed) Hamiltonian cycles on a 3 X (2n) knight's tour graph.

Original entry on oeis.org

0, 0, 0, 0, 32, 352, 3072, 30848, 295456, 2896832, 28120096, 273895232, 2664515712, 25931157504, 252338724352, 2455552258304, 23895692937216, 232533011307776, 2262837745837568, 22020130538878208, 214282979451801088, 2085233793265765376, 20291876152214982656
Offset: 1

Views

Author

Eric W. Weisstein, Mar 13 2009

Keywords

Crossrefs

Cf. A070030 for details and references.

Formula

a(n) = 2*A070030(n).
a(n) = 6*a(n-1) + 64*a(n-2) - 200*a(n-3) - 1000*a(n-4) + 3016*a(n-5) + 3488*a(n-6) - 24256*a(n-7) + 23776*a(n-8) + 104168*a(n-9) - 203408*a(n-10) - 184704*a(n-11) + 443392*a(n-12) + 14336*a(n-13) - 151296*a(n-14) + 145920*a(n-15) - 263424*a(n-16) + 317440*a(n-17) + 36864*a(n-18) - 966656*a(n-19) + 573440*a(n-20) + 131072*a(n-21), for n>=23. (See A070030) - Seiichi Manyama, Dec 16 2016

Extensions

Extended by Eric W. Weisstein, Mar 18 2009

A169767 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Eulerian symmetry".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 124, 0, 0, 0, 1404, 0, 0, 0, 12824, 0, 0, 0, 126696, 0, 0, 0, 1222368, 0, 0, 0, 11930192, 0, 0, 0, 115974192, 0, 0, 0, 1128943296, 0, 0, 0, 10984783168, 0, 0, 0, 106897187552, 0, 0, 0, 1040241749856
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

When the board is rotated 180 degrees, the diagram remains the same, and the second half of the tour is the same as the first half before rotation. (If the knight starts at one corner, he reaches the opposite corner after 3n/2 moves.)

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169767[n]=0 unless n mod 4 = 2.
Generating function: (2*(8*z^14 + 14*z^18 - 182*z^22 - 168*z^26 + 348*z^30 - 1000*z^34 + 13224*z^38 + 22904*z^42 - 105776*z^46 - 111616*z^50 + 292800*z^54 + 217536*z^58 - 294656*z^62 - 114432*z^66 - 22528*z^70 - 44032*z^74 + 180224*z^78 - 65536*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).

A169766 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Bergholtian symmetry".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 48, 0, 152, 0, 352, 0, 1200, 0, 3752, 0, 12912, 0, 34768, 0, 122120, 0, 346128, 0, 1202240, 0, 3337424, 0, 11650864, 0, 32634960, 0, 113539392, 0, 316870592, 0, 1104442752, 0, 3086894528, 0, 10748713792, 0, 30023935744, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

When the board is rotated 180 degrees, the diagram remains the same, but the tour reverses direction.

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = 0 unless n mod 2 = 0.
Generating function: (2*(2*z^10 - 8*z^14 + 24*z^16 - 76*z^18 + 32*z^20 + 288*z^22 - 716*z^24 + 792*z^26 - 336*z^28 - 2908*z^30 + 7896*z^32 - 1464*z^34 - 3432*z^36 + 7416*z^38 - 32616*z^40 - 11792*z^42 + 39888*z^44 + 35472*z^46 + 47968*z^48 + 35776*z^50 - 143424*z^52 - 197824*z^54 - 15552*z^56 - 11008*z^58 + 181376*z^60 + 269440*z^62 + 78080*z^64 + 53760*z^66 + 44288*z^68 - 48128*z^70 - 112640*z^72 - 124928*z^74 - 227328*z^76 - 155648*z^78 + 98304*z^80 + 147456*z^82 + 32768*z^84))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84)

Extensions

More terms extracted from the g.f. by R. J. Mathar, Oct 09 2010

A169768 Number of geometrically distinct closed knight's tours of a 3 X n chessboard that have twofold symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 24, 0, 24, 0, 276, 0, 176, 0, 2604, 0, 1876, 0, 25736, 0, 17384, 0, 248816, 0, 173064, 0, 2424608, 0, 1668712, 0, 23581056, 0, 16317480, 0, 229513584, 0, 158435296, 0, 2233386048, 0, 1543447264, 0, 21733496960
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = (A169765(n)+A169766(n)+A169767(n))/2.
a(n) = 0 unless n mod 2 = 0.
Generating function: (4*z^10 + 24*z^16 - 124*z^18 + 32*z^20 + 212*z^22 - 716*z^24 + 1248*z^26 - 336*z^28 - 5120*z^30 + 7896*z^32 - 4928*z^34 - 3432*z^36 + 41280*z^38 - 32616*z^40 + 22224*z^42 + 39888*z^44 - 140608*z^46 + 47968*z^48 - 151680*z^50 - 143424*z^52 + 189952*z^54 - 15552*z^56 + 413056*z^58 + 181376*z^60 - 50432*z^62 + 78080*z^64 - 121344*z^66 + 44288*z^68 - 141312*z^70 - 112640*z^72 - 337920*z^74 - 227328*z^76 + 49152*z^78 + 98304*z^80 + 163840*z^82 + 32768*z^84 + 65536*z^86)/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).
Showing 1-10 of 19 results. Next