cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A169696 Number of undirected Knight's tours on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 8, 0, 0, 52, 396, 560, 3048, 10672, 57248, 128864, 646272, 1838784, 8636880, 23400992, 105865688, 305753680, 1322849752, 3862974304, 16225820000, 48744080192, 198673312880, 607041217056, 2417584484232, 7519864632928, 29320809649000, 92507134938336
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2010, based on a communication from Don Knuth

Keywords

Comments

I think the (old) name "Number of open Knight's tours on a 3 X n board" is somewhat incorrect, because included are those tours in which the start/end cells are knight-neighbors. Such tours are potentially closed, although actually closing them would deprive them of specific start/end cells. "Number of undirected Knight's tours on a 3 X n board" would be a better name. For example the 3x10 has 3048 undirected tours, which would be 6096 directed tours, in accord with Colin Rose results (http://www.tri.org.au/knightframe.html, Solutions:3xm). Note that the 3x10 also has 16 closed tours (A169764 Number of closed Knight's tours on a 3 X n board), and each of those closed tour appears 30 times among the 3048 undirected tours, and 60 times among the 6096 directed tours. - Pierre Charland, Feb 15 2011

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Cf. A118067.

Formula

a(n) = A169770(n) + A169771(n) + A169772(n).
Asymptotic value: 0.02789*3.45059^n.

A070030 Number of closed Knight's tours on a 3 X 2n board.

Original entry on oeis.org

0, 0, 0, 0, 16, 176, 1536, 15424, 147728, 1448416, 14060048, 136947616, 1332257856, 12965578752, 126169362176, 1227776129152, 11947846468608, 116266505653888, 1131418872918784, 11010065269439104, 107141489725900544, 1042616896632882688, 10145938076107491328
Offset: 1

Views

Author

Noam D. Elkies, Apr 13 2002

Keywords

Comments

Leonhard Euler stated that no such tours are possible [Memoires Acad. Roy. Sci. (Berlin, 1759), 310-337], and many authors echoed this statement until Ernest Bergholt exhibited solutions for 2n=10 and 12 in British Chess Magazine 1918, page 74. The full set of 16 solutions for 2n=10 was published by Kraitchik in 1927. - Don Knuth, Apr 28 2010
Obtained independently by Don Knuth and Noam D. Elkies in April 1994, both using the transfer-matrix method (in slightly different ways). For this method, see for instance chapter 4.7 of R. P. Stanley's Enumerative Combinatorics, Vol. 1 (1986).
Ian Stewart, Mathematical Recreations column, Scientific American, February 1998, "Feedback", page 95, reports that Richard Ulmer of Denver has sent him a letter reporting work on this subject, about which he is writing a thesis, giving the terms though a(21). - N. J. A. Sloane, Mar 01 2018

Examples

			The smallest 3 X 2n board admitting a closed Knight's tour is the 3 X 10, on which there are 16 such tours.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

See also A169764, which gives the number of closed Knight's tours on a 3 X n board. Cf. A169696, A169765-A169777, A001230.

Programs

  • Mathematica
    Rest[CoefficientList[Series[16 * (x^5 + 5*x^6 - 34*x^7 - 116*x^8 + 505*x^9 + 616*x^10 - 3179*x^11 - 4*x^12 + 9536*x^13 - 8176*x^14 - 13392*x^15 + 15360*x^16 + 13888*x^17 + 2784*x^18 - 3328*x^19 - 22016*x^20 + 5120*x^21 + 2048*x^22) / (1 - 6*x - 64*x^2 + 200*x^3 + 1000*x^4 - 3016*x^5 - 3488*x^6 + 24256*x^7 - 23776*x^8 - 104168*x^9 + 203408*x^10 + 184704*x^11 - 443392*x^12 - 14336*x^13 + 151296*x^14 - 145920*x^15 + 263424*x^16 - 317440*x^17 - 36864*x^18 + 966656*x^19 - 573440*x^20 - 131072*x^21), {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 03 2016 *)
  • PARI
    g = 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^ 12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^1 0 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424* z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21); g = g + O(z^31); vector(30,n,polcoeff(g,n))

Formula

Generating function: 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^10 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424*z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21).
Asymptotic value .0001899*3.11949^(2n). - Don Knuth, Apr 28 2010. More decimal places: a(n) ~ 0.0001898644879979384968655648993009439045986223511152141689341... * 3.1194904567551021585814810124470909514449088706168023079811958...^(2*n). - Vaclav Kotesovec, Mar 03 2016
a(n) = A158074(n)/2. - Eric W. Weisstein, Mar 18 2009
Recurrence (D. E. Knuth and N. D. Elkies, 1994): a(n) = 6*a(n-1) + 64*a(n-2) - 200*a(n-3) - 1000*a(n-4) + 3016*a(n-5) + 3488*a(n-6) - 24256*a(n-7) + 23776*a(n-8) + 104168*a(n-9) - 203408*a(n-10) - 184704*a(n-11) + 443392*a(n-12) + 14336*a(n-13) - 151296*a(n-14) + 145920*a(n-15) - 263424*a(n-16) + 317440*a(n-17) + 36864*a(n-18) - 966656*a(n-19) + 573440*a(n-20) + 131072*a(n-21), for n>=23. - Vaclav Kotesovec, Mar 03 2016
a(n) = A383660(3n). - Don Knuth, May 05 2025

Extensions

Comment corrected by Johannes W. Meijer, Nov 22 2010

A169777 Number of geometrically distinct open knight's tours of a 3 X n chessboard.

Original entry on oeis.org

3, 0, 0, 14, 104, 146, 773, 2698, 14350, 32296, 161714, 460022, 2159794, 5851548, 26468357, 76442996, 330719293, 965759972, 4056479056, 12186078360, 49668414086, 151760518296, 604396415979, 1879966906486, 7330203447133, 23126786408904, 88609897281582
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The three distinct 3x4 tours were published by Euler in Memoires Acad. Roy. Sci. (Berlin, 1759), 310-337.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = A169696(n)/4 + A169776(n)/2.

A169770 Number of open knight's tour diagrams of a 3 X n chessboard that have "type X": both endpoints occur in the same column.

Original entry on oeis.org

4, 0, 0, 0, 80, 40, 368, 352, 5296, 3744, 48656, 40208, 523808, 415488, 5270976, 4333504, 54215264, 44497728, 551297184, 458337984, 5613555008, 4691821600, 56981627840, 47988689152, 577641089664, 489273948160, 5845628996352
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

Asymptotic value 0.000169*n*3.11949^n when n is even, 0.0000526*n*3.11949^n when n is odd.

A169765 Number of closed knight's tour diagrams of a 3 X n chessboard that are symmetric with respect to left-right reflection about a vertical axis.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 24, 0, 0, 0, 276, 0, 0, 0, 2604, 0, 0, 0, 25736, 0, 0, 0, 248816, 0, 0, 0, 2424608, 0, 0, 0, 23581056, 0, 0, 0, 229513584, 0, 0, 0, 2233386048, 0, 0, 0, 21733496960, 0, 0, 0, 211495383968, 0, 0, 0, 2058092298080
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The first example, for n=10, was exhibited by Ernest Bergholt in British Chess Magazine 1918, page 74.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169765(n)=0 unless n mod 4 = 2. And if n mod = 2, A169765(n) = A169765(n) + A169767(n).
Generating function: (2*(2*z^10 - 62*z^18 + 106*z^22 + 624*z^26 - 2560*z^30 - 2464*z^34 + 20640*z^38 + 11112*z^42 - 70304*z^46 - 75840*z^50 + 94976*z^54 + 206528*z^58 - 25216*z^62 - 60672*z^66 - 70656*z^70 - 168960*z^74 + 24576*z^78 + 81920*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).

Extensions

More terms from Alois P. Heinz, Nov 26 2010

A169767 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Eulerian symmetry".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 124, 0, 0, 0, 1404, 0, 0, 0, 12824, 0, 0, 0, 126696, 0, 0, 0, 1222368, 0, 0, 0, 11930192, 0, 0, 0, 115974192, 0, 0, 0, 1128943296, 0, 0, 0, 10984783168, 0, 0, 0, 106897187552, 0, 0, 0, 1040241749856
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

When the board is rotated 180 degrees, the diagram remains the same, and the second half of the tour is the same as the first half before rotation. (If the knight starts at one corner, he reaches the opposite corner after 3n/2 moves.)

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169767[n]=0 unless n mod 4 = 2.
Generating function: (2*(8*z^14 + 14*z^18 - 182*z^22 - 168*z^26 + 348*z^30 - 1000*z^34 + 13224*z^38 + 22904*z^42 - 105776*z^46 - 111616*z^50 + 292800*z^54 + 217536*z^58 - 294656*z^62 - 114432*z^66 - 22528*z^70 - 44032*z^74 + 180224*z^78 - 65536*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).

A169766 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Bergholtian symmetry".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 48, 0, 152, 0, 352, 0, 1200, 0, 3752, 0, 12912, 0, 34768, 0, 122120, 0, 346128, 0, 1202240, 0, 3337424, 0, 11650864, 0, 32634960, 0, 113539392, 0, 316870592, 0, 1104442752, 0, 3086894528, 0, 10748713792, 0, 30023935744, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

When the board is rotated 180 degrees, the diagram remains the same, but the tour reverses direction.

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = 0 unless n mod 2 = 0.
Generating function: (2*(2*z^10 - 8*z^14 + 24*z^16 - 76*z^18 + 32*z^20 + 288*z^22 - 716*z^24 + 792*z^26 - 336*z^28 - 2908*z^30 + 7896*z^32 - 1464*z^34 - 3432*z^36 + 7416*z^38 - 32616*z^40 - 11792*z^42 + 39888*z^44 + 35472*z^46 + 47968*z^48 + 35776*z^50 - 143424*z^52 - 197824*z^54 - 15552*z^56 - 11008*z^58 + 181376*z^60 + 269440*z^62 + 78080*z^64 + 53760*z^66 + 44288*z^68 - 48128*z^70 - 112640*z^72 - 124928*z^74 - 227328*z^76 - 155648*z^78 + 98304*z^80 + 147456*z^82 + 32768*z^84))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84)

Extensions

More terms extracted from the g.f. by R. J. Mathar, Oct 09 2010

A169768 Number of geometrically distinct closed knight's tours of a 3 X n chessboard that have twofold symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 24, 0, 24, 0, 276, 0, 176, 0, 2604, 0, 1876, 0, 25736, 0, 17384, 0, 248816, 0, 173064, 0, 2424608, 0, 1668712, 0, 23581056, 0, 16317480, 0, 229513584, 0, 158435296, 0, 2233386048, 0, 1543447264, 0, 21733496960
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = (A169765(n)+A169766(n)+A169767(n))/2.
a(n) = 0 unless n mod 2 = 0.
Generating function: (4*z^10 + 24*z^16 - 124*z^18 + 32*z^20 + 212*z^22 - 716*z^24 + 1248*z^26 - 336*z^28 - 5120*z^30 + 7896*z^32 - 4928*z^34 - 3432*z^36 + 41280*z^38 - 32616*z^40 + 22224*z^42 + 39888*z^44 - 140608*z^46 + 47968*z^48 - 151680*z^50 - 143424*z^52 + 189952*z^54 - 15552*z^56 + 413056*z^58 + 181376*z^60 - 50432*z^62 + 78080*z^64 - 121344*z^66 + 44288*z^68 - 141312*z^70 - 112640*z^72 - 337920*z^74 - 227328*z^76 + 49152*z^78 + 98304*z^80 + 163840*z^82 + 32768*z^84 + 65536*z^86)/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).

A169771 Number of open knight's tour diagrams of a 3 X n chessboard that have "type F": the endpoints occur in different columns and agree in color with the cells in the nearest corner.

Original entry on oeis.org

2, 0, 0, 52, 224, 520, 1616, 10320, 37024, 125120, 441200, 1798576, 6327472, 22985504, 81178008, 301420176, 1057619944, 3818476576, 13412523392, 48285742208, 168992600680, 602349395456, 2106360581920, 7471875943776, 26073917403304, 92017860990176, 320713651212384
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

Asymptotic value: 0.02789*3.45059^n.

A169772 Number of open knight's tour diagrams of a 3 X n chessboard that have "type B": the endpoints occur in different columns and disagree in color with the cells in the nearest corner.

Original entry on oeis.org

2, 0, 0, 0, 92, 0, 1064, 0, 14928, 0, 156416, 0, 1785600, 0, 19416704, 0, 211014544, 0, 2261999424, 0, 24067157192, 0, 254242274472, 0, 2669251156032, 0, 27880294589248
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169772(n)=0 unless n mod 2 = 0.
Asymptotic value: 0.00144*n*3.11949^n when n is even.
Showing 1-10 of 15 results. Next