Johan de Ruiter has authored 10 sequences.
A305190
a(n) is the number of different numbers of Hamiltonian cycles (up to direction) in graphs with n vertices.
Original entry on oeis.org
1, 1, 2, 3, 6, 16, 49, 232, 1351, 10367
Offset: 1
A graph on 4 vertices can have either 0, 1 or 3 Hamiltonian cycles (up to direction), which are 3 numbers, so a(4)= 3.
A214624
Braid numbers B((2)^n->(2)^n).
Original entry on oeis.org
1, 1, 16, 504, 28800, 2620800, 348364800, 63707212800, 15343379251200, 4707627724800000, 1792664637603840000, 829619584788234240000, 458592296933263933440000, 298435681233688170332160000, 225843218230899155927040000000, 196652982274555440023470080000000
Offset: 0
A214623
Braid numbers B((n,n)->(n,n)).
Original entry on oeis.org
1, 2, 16, 128, 1156, 10952, 107584, 1083392, 11115556, 115702472, 1218289216, 12948910592, 138708574096, 1495661223968, 16218468710656, 176727219273728, 1933956651447076, 21243204576601928, 234121111199439424, 2587943032046002688
Offset: 0
-
a[n_] := (-2)^n HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, 2];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
Original entry on oeis.org
1, 229, 117805, 64647289, 35669566217, 19690797527709, 10870506600976757, 6001202979497804657, 331304283062403135451, 1829008840116358153050197, 1009728374600381843221483965
Offset: 0
A175881
Number of closed Knight's tours on a 6 X n board.
Original entry on oeis.org
0, 0, 0, 0, 8, 9862, 1067638, 55488142, 3374967940, 239187240144, 15360134570696, 964730606632516, 61989683445413228, 4005716717182224826, 255967892553030600920, 16378998506224697063588, 1050504687249683771795632, 67351449674771471216148786, 4314151246752166099728445868
Offset: 1
The smallest 6 X n board admitting a closed Knight's tour is the 6 X 5, on which there are 8 such tours.
A175855
The number of closed Knight's tours on a 5 X 2n board.
Original entry on oeis.org
0, 0, 8, 44202, 13311268, 4557702762, 1495135512514, 491857035772330, 161514101568508400, 53034853662012222798, 17414154188157170439208, 5717847862749642677204182, 1877435447920358266870897874, 616447390029326136628439042672, 202407848349722353779265745190616, 66459727085467788423206394162537418, 21821760546806761707309514948565417796, 7165079447164571822068029945303172129766, 2352622444655438705806553391345493395131580, 772473271844923268504474277422663237674924998
Offset: 1
The smallest 5 X 2n board admitting a closed Knight's tour is the 5 X 6, on which there are 8 such tours.
A172478
The number of ways to dissect an n X n square into polyominoes of size n and then fill it to make it a Latin square, with the extra requirement that each number occurs within each polyomino exactly once.
Original entry on oeis.org
1, 4, 72, 13872, 11762160, 234312972480, 41182101508222080
Offset: 1
A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally. Both of these coverings allow for two 2 X 2 Latin squares without violating the extra constraint.
- J. de Ruiter, On Jigsaw Sudoku Puzzles and Related Topics, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010. [From Johan de Ruiter, Jun 15 2010]
Cf.
A002860 (Number of Latin squares of order n),
A172477 (Number of ways to dissect an n X n square into polyominoes of size n).
A173103
The number of possible borders of Latin squares with the top row fixed.
Original entry on oeis.org
1, 1, 2, 26, 924, 81624, 13433520, 3706068240, 1582042381920, 987057348842880, 861632512758823680, 1016677874552767660800, 1576819957670934809817600, 3140963381712726319842892800, 7880571655922780897709237811200, 24492587962448960350527019884595200
Offset: 1
The only two configurations for n=3, given the top row is 123:
123 123
2 1 3 2
312 231
Two arbitrary configurations for n=4, given the top row is 1234:
1234 1234
2 1 4 3
3 2 3 2
4123 2341
-
d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end:
a:= proc(n) a(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/
(n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Aug 18 2013
-
d = Subfactorial;
a[n_] := If[n <= 3, {1, 1, 2}[[n]], (n-2)! (((2n-5) d[n-2]^2)/(n-3) + 2d[n-1] d[n-2] + ((n-1) d[n-1]^2)/(n-2))];
Array[a, 20] (* Jean-François Alcover, Nov 10 2020 *)
A173104
The number of possible borders of Latin squares.
Original entry on oeis.org
1, 2, 12, 624, 110880, 58769280, 67704940800, 149428671436800, 574091539551129600, 3581833707481042944000, 34393612685291413069824000, 486990328595374993951457280000, 9818890674272030616178239406080000, 273823820339488809857168046768783360000
Offset: 1
Two arbitrary configurations for n=3:
123 312
2 1 1 3
312 231
Two arbitrary configurations for n=4:
1234 1432
2 1 3 4
3 2 4 1
4123 2143
-
d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end:
b:= proc(n) b(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/
(n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2))
end:
a:= n-> n!*b(n):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 18 2013
-
d = Subfactorial;
a[n_] := If[n <= 3, {1, 2, 12}[[n]], n! (n-2)! ((n-1)/(n-2) d[n-1]^2 + 2d[n-1] d[n-2] + (2n-5)/(n-3) d[n-2]^2)];
Array[a, 20] (* Jean-François Alcover, Nov 10 2020 *)
A172477
The number of ways to dissect an n X n square into polyominoes of size n.
Original entry on oeis.org
1, 2, 10, 117, 4006, 451206, 158753814, 187497290034, 706152947468301
Offset: 1
A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally.
- Jiahua Chen, Aneesha Manne, Rebecca Mendum, Poonam Sahoo, Alicia Yang, Minority Voter Distributions and Partisan Gerrymandering, arXiv:1911.09792 [cs.CY], 2019.
- Johan de Ruiter, On Jigsaw Sudoku Puzzles and Related Topics, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010.
- Christopher Donnay and Matthew Kahle, Asymptotics of Redistricting the n X n grid, arXiv:2311.13550 [math.CO], 2023.
- R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
- R. S. Harris, Counting Polyomino Tilings [From Bob Harris (me13013(AT)gmail.com), Mar 13 2010]
a(9) from Bob Harris (me13013(AT)gmail.com), Mar 13 2010
Comments