cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A173103 The number of possible borders of Latin squares with the top row fixed.

Original entry on oeis.org

1, 1, 2, 26, 924, 81624, 13433520, 3706068240, 1582042381920, 987057348842880, 861632512758823680, 1016677874552767660800, 1576819957670934809817600, 3140963381712726319842892800, 7880571655922780897709237811200, 24492587962448960350527019884595200
Offset: 1

Views

Author

Johan de Ruiter, Feb 09 2010

Keywords

Comments

The definition is not quite right, and should be corrected.

Examples

			The only two configurations for n=3, given the top row is 123:
  123   123
  2 1   3 2
  312   231
Two arbitrary configurations for n=4, given the top row is 1234:
  1234   1234
  2  1   4  3
  3  2   3  2
  4123   2341
		

Crossrefs

Related to A000166. Equals A173104 divided by n!.

Programs

  • Maple
    d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end:
    a:= proc(n) a(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/
           (n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 18 2013
  • Mathematica
    d = Subfactorial;
    a[n_] := If[n <= 3, {1, 1, 2}[[n]], (n-2)! (((2n-5) d[n-2]^2)/(n-3) + 2d[n-1] d[n-2] + ((n-1) d[n-1]^2)/(n-2))];
    Array[a, 20] (* Jean-François Alcover, Nov 10 2020 *)

Formula

For n>3, a(n)=(n-2)!((n-1)/(n-2)d[n-1]^2+2d[n-1]d[n-2]+(2n-5)/(n-3)d[n-2]^2), where d[k] is the number of derangements of k elements (A000166).
Showing 1-1 of 1 results.