cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070030 Number of closed Knight's tours on a 3 X 2n board.

Original entry on oeis.org

0, 0, 0, 0, 16, 176, 1536, 15424, 147728, 1448416, 14060048, 136947616, 1332257856, 12965578752, 126169362176, 1227776129152, 11947846468608, 116266505653888, 1131418872918784, 11010065269439104, 107141489725900544, 1042616896632882688, 10145938076107491328
Offset: 1

Views

Author

Noam D. Elkies, Apr 13 2002

Keywords

Comments

Leonhard Euler stated that no such tours are possible [Memoires Acad. Roy. Sci. (Berlin, 1759), 310-337], and many authors echoed this statement until Ernest Bergholt exhibited solutions for 2n=10 and 12 in British Chess Magazine 1918, page 74. The full set of 16 solutions for 2n=10 was published by Kraitchik in 1927. - Don Knuth, Apr 28 2010
Obtained independently by Don Knuth and Noam D. Elkies in April 1994, both using the transfer-matrix method (in slightly different ways). For this method, see for instance chapter 4.7 of R. P. Stanley's Enumerative Combinatorics, Vol. 1 (1986).
Ian Stewart, Mathematical Recreations column, Scientific American, February 1998, "Feedback", page 95, reports that Richard Ulmer of Denver has sent him a letter reporting work on this subject, about which he is writing a thesis, giving the terms though a(21). - N. J. A. Sloane, Mar 01 2018

Examples

			The smallest 3 X 2n board admitting a closed Knight's tour is the 3 X 10, on which there are 16 such tours.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

See also A169764, which gives the number of closed Knight's tours on a 3 X n board. Cf. A169696, A169765-A169777, A001230.

Programs

  • Mathematica
    Rest[CoefficientList[Series[16 * (x^5 + 5*x^6 - 34*x^7 - 116*x^8 + 505*x^9 + 616*x^10 - 3179*x^11 - 4*x^12 + 9536*x^13 - 8176*x^14 - 13392*x^15 + 15360*x^16 + 13888*x^17 + 2784*x^18 - 3328*x^19 - 22016*x^20 + 5120*x^21 + 2048*x^22) / (1 - 6*x - 64*x^2 + 200*x^3 + 1000*x^4 - 3016*x^5 - 3488*x^6 + 24256*x^7 - 23776*x^8 - 104168*x^9 + 203408*x^10 + 184704*x^11 - 443392*x^12 - 14336*x^13 + 151296*x^14 - 145920*x^15 + 263424*x^16 - 317440*x^17 - 36864*x^18 + 966656*x^19 - 573440*x^20 - 131072*x^21), {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 03 2016 *)
  • PARI
    g = 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^ 12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^1 0 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424* z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21); g = g + O(z^31); vector(30,n,polcoeff(g,n))

Formula

Generating function: 16 * (z^5 + 5*z^6 - 34*z^7 - 116*z^8 + 505*z^9 + 616*z^10 - 3179*z^11 - 4*z^12 + 9536*z^13 - 8176*z^14 - 13392*z^15 + 15360*z^16 + 13888*z^17 + 2784*z^18 - 3328*z^19 - 22016*z^20 + 5120*z^21 + 2048*z^22) / (1 - 6*z - 64*z^2 + 200*z^3 + 1000*z^4 - 3016*z^5 - 3488*z^6 + 24256*z^7 - 23776*z^8 - 104168*z^9 + 203408*z^10 + 184704*z^11 - 443392*z^12 - 14336*z^13 + 151296*z^14 - 145920*z^15 + 263424*z^16 - 317440*z^17 - 36864*z^18 + 966656*z^19 - 573440*z^20 - 131072*z^21).
Asymptotic value .0001899*3.11949^(2n). - Don Knuth, Apr 28 2010. More decimal places: a(n) ~ 0.0001898644879979384968655648993009439045986223511152141689341... * 3.1194904567551021585814810124470909514449088706168023079811958...^(2*n). - Vaclav Kotesovec, Mar 03 2016
a(n) = A158074(n)/2. - Eric W. Weisstein, Mar 18 2009
Recurrence (D. E. Knuth and N. D. Elkies, 1994): a(n) = 6*a(n-1) + 64*a(n-2) - 200*a(n-3) - 1000*a(n-4) + 3016*a(n-5) + 3488*a(n-6) - 24256*a(n-7) + 23776*a(n-8) + 104168*a(n-9) - 203408*a(n-10) - 184704*a(n-11) + 443392*a(n-12) + 14336*a(n-13) - 151296*a(n-14) + 145920*a(n-15) - 263424*a(n-16) + 317440*a(n-17) + 36864*a(n-18) - 966656*a(n-19) + 573440*a(n-20) + 131072*a(n-21), for n>=23. - Vaclav Kotesovec, Mar 03 2016
a(n) = A383660(3n). - Don Knuth, May 05 2025

Extensions

Comment corrected by Johannes W. Meijer, Nov 22 2010

A383661 Number of closed knight's tours in the first 2n cells of a 5 X ceiling(2n/5) board.

Original entry on oeis.org

1, 0, 1, 30, 0, 148, 8, 78, 9309, 612, 62749, 44202, 42049, 2916485, 147192, 18284136, 13311268, 13008389, 973107552, 51147756, 6190192748, 4557702762, 4311375354, 316985255470, 16552301184, 2015267424300, 1495135512514, 1417634375316, 104324890543686, 5459334927260, 663068761241948
Offset: 9

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 5, the rightmost column has only 2n mod 5 rows (see example).

Examples

			For n=9 the a(9)=1 example is
  1 14  5 10
  4  9  2 15
 13 18 11  6
  8  3 16
 17 12  7    .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(5n) = A175855(n).

A383662 Number of closed knight's tours in the first 2n cells of a 6 X ceiling(2n/6) board.

Original entry on oeis.org

6, 0, 2, 302, 8, 151, 19072, 9862, 18202, 1603948, 1067638, 1310791, 107096187, 55488142, 66608924, 6149236417, 3374967940, 4259963914, 402706752421, 239187240144, 292999006211, 26470682075988, 15360134570696, 18595568012716, 1685811256230132, 964730606632516, 1173328484648288
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 3, the rightmost column has only 2n mod 6 rows (see example).

Examples

			For n=11, one of the a(11)=6 solutions is
  1  4 13 16
 12 15  2  5
  3 22 17 14
  8 11  6 19
 21 18  9
 10  7 20   .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(3n) = A175881(n).

A383663 Number of closed knight's tours in the first 2n cells of a 7 X ceiling(2n/7) board.

Original entry on oeis.org

2, 11, 58, 0, 21, 1020, 9309, 1481, 34162, 1295034, 1067638, 2213327, 50139185, 682189688, 144994543, 2607067351, 53099426601, 34524432316, 57716933870, 1388556345255, 16330667126220, 3697750041989, 70341043737487, 1662805965511580, 1250063279938854, 2122662114673944
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 7, the rightmost column has only 2n mod 7 rows (see example).

Examples

			For n=11, the first of a(11)=2 solutions is
  1  4 21  6
 20  7  2
  3 22  5
  8 19 10
 11 16 13
 14  9 18
 17 12 15
and the other is obtained by reflecting the bottom four rows:
  1  4 21  6
 20  7  2
  3 22  5
 10 19  8
 13 16 11
 18  9 14
 15 12 17 .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(7n) = A193054(n).

A383664 Number of closed knight's tours in the first 2n cells of an 8 X ceiling(2n/8) board.

Original entry on oeis.org

4, 12, 212, 0, 50, 4525, 101730, 44202, 66034, 2408624, 69362264, 55488142, 101343548, 2398536889, 43391615822, 34524432316, 52661182514, 1231713564493, 20780788492646, 13267364410532, 21515340977481, 552407941427835, 10211663162678661, 7112881119092574, 11873618786859165
Offset: 13

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 4, the rightmost column has only 2n mod 8 rows (see example).

Examples

			For n=13 the a(13)=4 solutions are
  1  4 25 12
 24 11  2  5
  3 26 13
 10 23  6
  7 14  9
 22 17 20
 19  8 15
 16 21 18   ;
  1  4 25 12
 24 11  2  5
  3 26 13
 10 23  6
  7 14  9
 20 15 22
 15  8 19
 18 21 16   ;
  1 14 25 22
 24 21  2 15
 13 26 23
 20  3 16
 17 12 19
  4  9  6
  7 18 11
 10  5  8   ;
  1 14 25 22
 24 21  2 15
 13 26 23
 20  3 16
 17 12 19
  6  9  4
 11 18  7
  8  5 10   .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(4n) = A193055(n).
Showing 1-5 of 5 results.