cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383660 Number of closed knight's tours in the first 2n cells of a 3 X ceiling(2n/3) board.

Original entry on oeis.org

4, 0, 4, 24, 16, 56, 306, 176, 456, 2632, 1536, 4828, 26788, 15424, 44952, 254288, 147728, 448032, 2502568, 1448416, 4310048, 24228704, 14060048, 42195584, 236335248, 136947616, 409403328, 2297294496, 1332257856, 3989883552, 22366625344, 12965578752, 38798663104, 217604833360, 126169362176
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 3, the rightmost column has only 2n mod 3 rows (see example).

Examples

			For n=11 the a(11)=4 solutions are
  1  4  7 10 17 20 15 12
  6  9  2 21 14 11 18
  3 22  5  8 19 16 13    ;
  1  4  7 14 11 20  9 18
  6 15  2 21  8 17 12
  3 22  5 16 13 10 19    ;
  1  4 21 12 15  6 17  8
 20 11  2  5 18  9 14
  3 22 19 10 13 16  7    ;
  1  4 21 18  9  6 11 14
 20 17  2  5 12 15  8
  3 22 19 16  7 10 13    .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(3n) = A070030(n).

A383661 Number of closed knight's tours in the first 2n cells of a 5 X ceiling(2n/5) board.

Original entry on oeis.org

1, 0, 1, 30, 0, 148, 8, 78, 9309, 612, 62749, 44202, 42049, 2916485, 147192, 18284136, 13311268, 13008389, 973107552, 51147756, 6190192748, 4557702762, 4311375354, 316985255470, 16552301184, 2015267424300, 1495135512514, 1417634375316, 104324890543686, 5459334927260, 663068761241948
Offset: 9

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 5, the rightmost column has only 2n mod 5 rows (see example).

Examples

			For n=9 the a(9)=1 example is
  1 14  5 10
  4  9  2 15
 13 18 11  6
  8  3 16
 17 12  7    .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(5n) = A175855(n).

A383662 Number of closed knight's tours in the first 2n cells of a 6 X ceiling(2n/6) board.

Original entry on oeis.org

6, 0, 2, 302, 8, 151, 19072, 9862, 18202, 1603948, 1067638, 1310791, 107096187, 55488142, 66608924, 6149236417, 3374967940, 4259963914, 402706752421, 239187240144, 292999006211, 26470682075988, 15360134570696, 18595568012716, 1685811256230132, 964730606632516, 1173328484648288
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 3, the rightmost column has only 2n mod 6 rows (see example).

Examples

			For n=11, one of the a(11)=6 solutions is
  1  4 13 16
 12 15  2  5
  3 22 17 14
  8 11  6 19
 21 18  9
 10  7 20   .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(3n) = A175881(n).

A383663 Number of closed knight's tours in the first 2n cells of a 7 X ceiling(2n/7) board.

Original entry on oeis.org

2, 11, 58, 0, 21, 1020, 9309, 1481, 34162, 1295034, 1067638, 2213327, 50139185, 682189688, 144994543, 2607067351, 53099426601, 34524432316, 57716933870, 1388556345255, 16330667126220, 3697750041989, 70341043737487, 1662805965511580, 1250063279938854, 2122662114673944
Offset: 11

Views

Author

Don Knuth, May 04 2025

Keywords

Comments

If n is not a multiple of 7, the rightmost column has only 2n mod 7 rows (see example).

Examples

			For n=11, the first of a(11)=2 solutions is
  1  4 21  6
 20  7  2
  3 22  5
  8 19 10
 11 16 13
 14  9 18
 17 12 15
and the other is obtained by reflecting the bottom four rows:
  1  4 21  6
 20  7  2
  3 22  5
 10 19  8
 13 16 11
 18  9 14
 15 12 17 .
		

References

  • Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).

Crossrefs

Formula

a(7n) = A193054(n).

A193055 Number of closed knight's tours on an 8 X n board.

Original entry on oeis.org

0, 0, 0, 0, 44202, 55488142, 34524432316, 13267364410532, 7112881119092574, 4235482818156697040, 2122880233853945590892, 1105420672289849239070962, 586820057145837880942582376, 311550865881297158579957164664, 162703111270636640083076205067310
Offset: 1

Views

Author

Zhao Hui Du, Jul 15 2011

Keywords

Crossrefs

Programs

  • C
    See Du link.

Formula

a(n) = A383664(4n). - Don Knuth, May 05 2025
Showing 1-5 of 5 results.