A383660
Number of closed knight's tours in the first 2n cells of a 3 X ceiling(2n/3) board.
Original entry on oeis.org
4, 0, 4, 24, 16, 56, 306, 176, 456, 2632, 1536, 4828, 26788, 15424, 44952, 254288, 147728, 448032, 2502568, 1448416, 4310048, 24228704, 14060048, 42195584, 236335248, 136947616, 409403328, 2297294496, 1332257856, 3989883552, 22366625344, 12965578752, 38798663104, 217604833360, 126169362176
Offset: 11
For n=11 the a(11)=4 solutions are
1 4 7 10 17 20 15 12
6 9 2 21 14 11 18
3 22 5 8 19 16 13 ;
1 4 7 14 11 20 9 18
6 15 2 21 8 17 12
3 22 5 16 13 10 19 ;
1 4 21 12 15 6 17 8
20 11 2 5 18 9 14
3 22 19 10 13 16 7 ;
1 4 21 18 9 6 11 14
20 17 2 5 12 15 8
3 22 19 16 7 10 13 .
- Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
- Don Knuth, Table of n, a(n) for n = 11..150
- Don Knuth, CWEB program with input parameter board,100,3,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase.
A383661
Number of closed knight's tours in the first 2n cells of a 5 X ceiling(2n/5) board.
Original entry on oeis.org
1, 0, 1, 30, 0, 148, 8, 78, 9309, 612, 62749, 44202, 42049, 2916485, 147192, 18284136, 13311268, 13008389, 973107552, 51147756, 6190192748, 4557702762, 4311375354, 316985255470, 16552301184, 2015267424300, 1495135512514, 1417634375316, 104324890543686, 5459334927260, 663068761241948
Offset: 9
For n=9 the a(9)=1 example is
1 14 5 10
4 9 2 15
13 18 11 6
8 3 16
17 12 7 .
- Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
- Don Knuth, Table of n, a(n) for n = 9..150
- Don Knuth, CWEB program with input parameter board,60,5,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase].
A383662
Number of closed knight's tours in the first 2n cells of a 6 X ceiling(2n/6) board.
Original entry on oeis.org
6, 0, 2, 302, 8, 151, 19072, 9862, 18202, 1603948, 1067638, 1310791, 107096187, 55488142, 66608924, 6149236417, 3374967940, 4259963914, 402706752421, 239187240144, 292999006211, 26470682075988, 15360134570696, 18595568012716, 1685811256230132, 964730606632516, 1173328484648288
Offset: 11
For n=11, one of the a(11)=6 solutions is
1 4 13 16
12 15 2 5
3 22 17 14
8 11 6 19
21 18 9
10 7 20 .
- Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
- Don Knuth, Table of n, a(n) for n = 11..150
- Don Knuth, CWEB program with input parameter board,50,6,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase].
A383663
Number of closed knight's tours in the first 2n cells of a 7 X ceiling(2n/7) board.
Original entry on oeis.org
2, 11, 58, 0, 21, 1020, 9309, 1481, 34162, 1295034, 1067638, 2213327, 50139185, 682189688, 144994543, 2607067351, 53099426601, 34524432316, 57716933870, 1388556345255, 16330667126220, 3697750041989, 70341043737487, 1662805965511580, 1250063279938854, 2122662114673944
Offset: 11
For n=11, the first of a(11)=2 solutions is
1 4 21 6
20 7 2
3 22 5
8 19 10
11 16 13
14 9 18
17 12 15
and the other is obtained by reflecting the bottom four rows:
1 4 21 6
20 7 2
3 22 5
10 19 8
13 16 11
18 9 14
15 12 17 .
- Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
- Don Knuth, Table of n, a(n) for n = 11..147
- Don Knuth, CWEB program with input parameter board,42,7,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase].
A193055
Number of closed knight's tours on an 8 X n board.
Original entry on oeis.org
0, 0, 0, 0, 44202, 55488142, 34524432316, 13267364410532, 7112881119092574, 4235482818156697040, 2122880233853945590892, 1105420672289849239070962, 586820057145837880942582376, 311550865881297158579957164664, 162703111270636640083076205067310
Offset: 1
Showing 1-5 of 5 results.
Comments