cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A346868 Sum of divisors of the numbers with no middle divisors.

Original entry on oeis.org

4, 6, 8, 18, 12, 14, 24, 18, 20, 32, 36, 24, 42, 40, 30, 32, 48, 54, 38, 60, 56, 42, 44, 84, 72, 48, 72, 98, 54, 72, 80, 90, 60, 62, 96, 84, 68, 126, 96, 72, 74, 114, 124, 140, 168, 80, 126, 84, 108, 132, 120, 90, 168, 128, 144, 120, 98, 102, 216, 104, 192, 162, 108, 110
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is equal to zero.
So knowing this characteristic shape we can know if a number has middle divisors (or not) just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with no middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.
All terms are even numbers.

Examples

			a(4) = 18 because the sum of divisors of the fourth number with no middle divisors (i.e., 10) is 1 + 2 + 5 + 10 = 18.
On the other hand we can see that in the main diagonal of every diagram the width is equal to zero as shown below.
Illustration of initial terms:
m(n) = A071561(n).
.
   n   m(n) a(n)   Diagram
.                      _   _   _     _ _   _ _     _   _   _ _ _     _
                      | | | | | |   | | | | | |   | | | | | | | |   | |
                   _ _|_| | | | |   | | | | | |   | | | | | | | |   | |
   1    3    4    |_ _|  _|_| | |   | | | | | |   | | | | | | | |   | |
                   _ _ _|    _|_|   | | | | | |   | | | | | | | |   | |
   2    5    6    |_ _ _|  _|    _ _| | | | | |   | | | | | | | |   | |
                   _ _ _ _|     |  _ _|_| | | |   | | | | | | | |   | |
   3    7    8    |_ _ _ _|  _ _|_|    _ _|_| |   | | | | | | | |   | |
                            |  _|     |  _ _ _|   | | | | | | | |   | |
                   _ _ _ _ _| |      _|_|    _ _ _|_| | | | | | |   | |
   4   10   18    |_ _ _ _ _ _|  _ _|       |    _ _ _|_| | | | |   | |
   5   11   12    |_ _ _ _ _ _| |  _|      _|   |  _ _ _ _|_| | |   | |
                   _ _ _ _ _ _ _| |      _|  _ _| | |  _ _ _ _|_|   | |
   6   13   14    |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _ _| |
   7   14   24    |_ _ _ _ _ _ _ _| |     |     |  _|_|   |  _ _ _ _ _|
                                    |  _ _|  _ _|_|       | |
                   _ _ _ _ _ _ _ _ _| |  _ _|  _|        _|_|
   8   17   18    |_ _ _ _ _ _ _ _ _| | |_ _ _|         |
                   _ _ _ _ _ _ _ _ _ _| |  _ _|        _|
   9   19   20    |_ _ _ _ _ _ _ _ _ _| | |        _ _|
                   _ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
  10   21   32    |_ _ _ _ _ _ _ _ _ _ _| | |  _ _|
  11   22   36    |_ _ _ _ _ _ _ _ _ _ _ _| | |
  12   23   24    |_ _ _ _ _ _ _ _ _ _ _ _| | |
                                            | |
                   _ _ _ _ _ _ _ _ _ _ _ _ _| |
  13   26   42    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], 0, Plus @@ d]]; Select[Array[s, 110], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1; \\ A071561 apply(sigma, select(is, [1..150])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071561(n)).

A156304 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 8, 21, 77, 199, 661, 1663, 4852, 12382, 33289, 82877, 213026, 518109, 1279852, 3053404, 7312985, 17093793, 39952528, 91661695, 209709116, 473095589, 1062567288, 2359804486, 5214774263, 11415904502, 24860918943, 53709881911
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Euler transform of A160889. - Vaclav Kotesovec, Nov 01 2024

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +...
log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A156303, A202993, A203557.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1.
log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - Vaclav Kotesovec, Nov 01 2024

A202994 a(n) = sigma(n^4).

Original entry on oeis.org

1, 31, 121, 511, 781, 3751, 2801, 8191, 9841, 24211, 16105, 61831, 30941, 86831, 94501, 131071, 88741, 305071, 137561, 399091, 338921, 499255, 292561, 991111, 488281, 959171, 797161, 1431311, 732541, 2929531, 954305, 2097151, 1948705, 2750971, 2187581
Offset: 1

Views

Author

Paul D. Hanna, Dec 27 2011

Keywords

Comments

Here sigma(n^4) denotes the sums of divisors of n^4.

Examples

			L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
    f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    {a(n)=sigma(n^4)}
    
  • Python
    from math import prod
    from sympy import factorint
    def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A000203(A000583(n)). - Michel Marcus, Sep 10 2020
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A346865 Sum of divisors of the n-th hexagonal number.

Original entry on oeis.org

1, 12, 24, 56, 78, 144, 112, 360, 234, 360, 384, 672, 434, 960, 720, 992, 864, 1872, 760, 2352, 1344, 1584, 1872, 2880, 1767, 3024, 2160, 4032, 2400, 4320, 1984, 6552, 4032, 3672, 4608, 6552, 2812, 7440, 5376, 7200, 5082, 8064, 4752, 10080, 7020, 8064, 6144
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak.
So knowing this characteristic shape we can know if a number is an hexagonal number (or not) just by looking at the diagram, even ignoring the concept of hexagonal number.
Therefore we can see a geometric pattern of the distribution of the hexagonal numbers in the stepped pyramid described in A245092.

Examples

			a(3) = 24 because the sum of divisors of the third hexagonal number (i.e., 15) is 1 + 3 + 5 + 15 = 24.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a valley and the largest Dyck path has a peak as shown below.
Illustration of initial terms:
-------------------------------------------------------------------------
  n  H(n)  a(n)  Diagram
-------------------------------------------------------------------------
                 _         _                 _                         _
  1    1    1   |_|       | |               | |                       | |
                          | |               | |                       | |
                       _ _| |               | |                       | |
                      |    _|               | |                       | |
                 _ _ _|  _|                 | |                       | |
  2    6   12   |_ _ _ _|                   | |                       | |
                                            | |                       | |
                                       _ _ _|_|                       | |
                                   _ _| |                             | |
                                  |    _|                             | |
                                 _|  _|                               | |
                                |_ _|                                 | |
                                |                                     | |
                 _ _ _ _ _ _ _ _|                            _ _ _ _ _| |
  3   15   24   |_ _ _ _ _ _ _ _|                           |  _ _ _ _ _|
                                                            | |
                                                         _ _| |
                                                     _ _|  _ _|
                                                    |    _|
                                                   _|  _|
                                                  |  _|
                                             _ _ _| |
                                            |  _ _ _|
                                            | |
                                            | |
                                            | |
                 _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column H gives the nonzero hexagonal numbers (A000384).
a(n) is also the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 8 + 8 + 8 = 24, so a(3) = 24.
For more information see A237593.
		

Crossrefs

Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n*(2*n - 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
  • PARI
    a(n) = sigma(n*(2*n-1)); \\ Michel Marcus, Aug 18 2021
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n*(2*n - 1)))
    print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Aug 20 2021

Formula

a(n) = A000203(A000384(n)).
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Vaclav Kotesovec, Aug 18 2021

A346866 Sum of divisors of the n-th second hexagonal number.

Original entry on oeis.org

4, 18, 32, 91, 72, 168, 192, 270, 260, 576, 288, 868, 560, 720, 768, 1488, 864, 1482, 1120, 1764, 1408, 2808, 1152, 3420, 2232, 2268, 2880, 4480, 1800, 4464, 3328, 5292, 3264, 5184, 3456, 6734, 4712, 5760, 4480, 10890, 3528, 10368, 5280, 7560, 8736, 9216, 5760, 12152
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.

Examples

			a(3) = 32 because the sum of divisors of the third second hexagonal number (i.e., 21) is 1 + 3 + 7 + 21 = 32.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a peak and the largest Dyck path has a valley as shown below.
Illustration of initial terms:
---------------------------------------------------------------------------------------
  n  h(n)  a(n)  Diagram
---------------------------------------------------------------------------------------
                    _             _                     _                            _
                   | |           | |                   | |                          | |
                _ _|_|           | |                   | |                          | |
  1    3    4  |_ _|             | |                   | |                          | |
                                 | |                   | |                          | |
                              _ _| |                   | |                          | |
                             |  _ _|                   | |                          | |
                          _ _|_|                       | |                          | |
                         |  _|                         | |                          | |
                _ _ _ _ _| |                           | |                          | |
  2   10   18  |_ _ _ _ _ _|                           | |                          | |
                                                _ _ _ _|_|                          | |
                                               | |                                  | |
                                              _| |                                  | |
                                             |  _|                                  | |
                                          _ _|_|                                    | |
                                      _ _|  _|                                      | |
                                     |_ _ _|                                        | |
                                     |                                 _ _ _ _ _ _ _| |
                                     |                                |    _ _ _ _ _ _|
                _ _ _ _ _ _ _ _ _ _ _|                                |   |
  3   21   32  |_ _ _ _ _ _ _ _ _ _ _|                             _ _|   |
                                                                  |       |
                                                                 _|    _ _|
                                                                |     |
                                                             _ _|    _|
                                                         _ _|      _|
                                                        |        _|
                                                   _ _ _|    _ _|
                                                  |         |
                                                  |  _ _ _ _|
                                                  | |
                                                  | |
                                                  | |
                                                  | |
               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   36   91 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column h gives the n-th second hexagonal number (A014105).
The widths of the main diagonal of the diagrams are [0, 0, 0, 1] respectively.
a(n) is the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 11 + 5 + 5 + 11 = 32, so a(3) = 32.
For n = 4 there is only one region (or part) of size 91 in the fourth diagram so a(4) = 91.
		

Crossrefs

Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors), A347155 (of nontriangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n*(2*n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
  • PARI
    a(n) = sigma(n*(2*n + 1)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = A000203(A014105(n)).
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Amiram Eldar, Dec 31 2024

A203556 a(n) = sigma(n^5).

Original entry on oeis.org

1, 63, 364, 2047, 3906, 22932, 19608, 65535, 88573, 246078, 177156, 745108, 402234, 1235304, 1421784, 2097151, 1508598, 5580099, 2613660, 7995582, 7137312, 11160828, 6728904, 23854740, 12207031, 25340742, 21523360, 40137576, 21243690, 89572392, 29583456, 67108863
Offset: 1

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

a(n) modulo 6 begins: [1,3,4,1,0,0,0,3,1,0,0,4,0,0,0,1,0,3,0,0,0,0,0,0,1,0,...], in which positions of nonzero residues seem related to squares.

Examples

			L.g.f.: L(x) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...
where the g.f. of A203557 begins:
exp(L(x)) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
		

Crossrefs

Cf. A203557 (exp), A000203 (sigma), A000584, A013664.
Variants: A065764, A175926, A202994.

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 09 2020 *)
    DivisorSigma[1,Range[40]^5] (* Harvey P. Dale, Dec 05 2021 *)
  • PARI
    a(n) = sigma(n^5)

Formula

Logarithmic derivative of A203557.
Multiplicative with a(p^e) = (p^(5*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
From Amiram Eldar, Nov 05 2022: (Start)
a(n) = A000203(A000584(n)) = A000203(n^5).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3220880186... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A346867 Sum of divisors of the numbers that have middle divisors.

Original entry on oeis.org

1, 3, 7, 12, 15, 13, 28, 24, 31, 39, 42, 60, 31, 56, 72, 63, 48, 91, 90, 96, 78, 124, 57, 93, 120, 120, 168, 104, 127, 144, 144, 195, 96, 186, 121, 224, 180, 234, 112, 252, 171, 156, 217, 210, 280, 216, 248, 182, 360, 133, 312, 255, 252, 336, 240, 336, 168, 403, 372, 234
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is >= 1.
Also the width on the main diagonal equals the number of middle divisors.
So knowing this characteristic shape we can know if a number has middle divisors (or not) and the number of them just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.

Examples

			a(4) = 12 because the sum of divisors of the fourth number that has middle divisors (i.e., 6) is 1 + 2 + 3 + 6 = 12.
On the other hand we can see that in the main diagonal of every diagram the width is >= 1 as shown below.
Illustration of initial terms:
m(n) = A071562(n).
.
   n   m(n) a(n)   Diagram
.                  _ _   _   _   _ _     _     _ _   _   _       _
   1    1    1    |_| | | | | | | | |   | |   | | | | | | |     | |
   2    2    3    |_ _|_| | | | | | |   | |   | | | | | | |     | |
                   _ _|  _|_| | | | |   | |   | | | | | | |     | |
   3    4    7    |_ _ _|    _|_| | |   | |   | | | | | | |     | |
                   _ _ _|  _|  _ _|_|   | |   | | | | | | |     | |
   4    6   12    |_ _ _ _|  _| |  _ _ _| |   | | | | | | |     | |
                   _ _ _ _| |_ _|_|    _ _|   | | | | | | |     | |
   5    8   15    |_ _ _ _ _|  _|     |  _ _ _|_| | | | | |     | |
   6    9   13    |_ _ _ _ _| |      _|_| |  _ _ _|_| | | |     | |
                              |  _ _|    _| |    _ _ _|_| |     | |
                   _ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|     | |
   7   12   28    |_ _ _ _ _ _ _| |_ _|  _|  _ _| |    _ _ _ _ _| |
                                  |  _ _|  _|    _|   |    _ _ _ _|
                   _ _ _ _ _ _ _ _| |     |     |  _ _|   |
   8   15   24    |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |
   9   16   31    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|
                   _ _ _ _ _ _ _ _ _| | |     |      _|
  10   18   39    |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|
                   _ _ _ _ _ _ _ _ _ _| | |       |
  11   20   42    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
                                          | |
                                          | |
                   _ _ _ _ _ _ _ _ _ _ _ _| |
  12   24   60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
The n-th diagram has the property that at least it shares a vertex with the (n+1)-st diagram.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346868 (of numbers with no middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], Plus @@ d, 0]]; Select[Array[s, 150], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 ; \\ A071562
    apply(sigma, select(is, [1..200])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071562(n)).

A074466 a(n) = gcd(n^3, sigma(n^3), phi(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 24, 1, 1, 1, 20, 1, 8, 1, 8, 15, 1, 1, 3, 1, 4, 1, 8, 1, 24, 1, 4, 1, 16, 1, 1800, 1, 1, 3, 4, 25, 1, 1, 8, 1, 4, 1, 24, 1, 8, 3, 8, 1, 8, 1, 5, 9, 4, 1, 12, 1, 16, 1, 4, 1, 480, 1, 8, 1, 1, 65, 72, 1, 4, 3, 200, 1, 3, 1, 4, 5, 8, 1, 24, 1, 4, 1, 4, 1, 64, 5, 8, 3, 88, 1, 180, 7, 16, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			n=10: gcd[1000,2340,400] = 20 = a(10).
		

Crossrefs

Programs

  • Magma
    [Gcd(n^3, Gcd(SumOfDivisors(n^3), EulerPhi(n^3))): n in [1..100]]; // Vincenzo Librandi, Sep 20 2018
  • Mathematica
    Table[Apply[GCD, {w^3, DivisorSigma[1, w^3], EulerPhi[w^3]}], {w, 1, 128}]
    GCD[#,DivisorSigma[1,#],EulerPhi[#]]&/@(Range[100]^3) (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    A074466(n) = gcd([n^3, sigma(n^3), eulerphi(n^3)]); \\ Antti Karttunen, Sep 07 2018
    

Formula

a(n) = A074389(n^3).

A234645 Sum of the divisors of n^3+1.

Original entry on oeis.org

1, 3, 13, 56, 84, 312, 256, 660, 800, 1332, 1344, 3458, 2240, 3792, 4836, 6572, 4356, 13440, 6160, 16800, 13312, 15192, 11136, 35685, 19840, 25284, 30976, 42560, 22740, 63648, 30464, 71820, 51792, 65664, 53952, 111440, 52136, 84480, 99008, 133560, 75264
Offset: 0

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Examples

			a(4) = 84 because 4^3+1 = 65 and the sum of the 4 divisors {1, 5, 13, 65} is 84.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3+1): n in [0..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 + 1]], {n, 0, 50}]
    DivisorSigma[1,Range[0,40]^3+1] (* Harvey P. Dale, Jul 27 2021 *)
  • PARI
    a(n) = sigma(n^3+1); \\ Michel Marcus, Jun 19 2015

Formula

a(n) = A000203(A001093(n)). - Michel Marcus, Jun 19 2015
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.449926279... . - Amiram Eldar, Dec 09 2024

A234860 Sum of the divisors of n^3 - 1.

Original entry on oeis.org

8, 42, 104, 224, 264, 780, 592, 1680, 1520, 2880, 1896, 5642, 2968, 5808, 8736, 9548, 7200, 15360, 8440, 19488, 19032, 23040, 14448, 49920, 23560, 31836, 32912, 53312, 34200, 77688, 38912, 70812, 62088, 74088, 67584, 152320, 56392, 107520, 99736
Offset: 2

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3-1): n in [2..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 - 1]], {n, 2, 50}]
  • PARI
    a(n) = sigma(n^3-1); \\ Amiram Eldar, Dec 09 2024

Formula

From Amiram Eldar, Dec 09 2024: (Start)
a(n) = A000203(A068601(n)).
Sum_{k=2..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.4499262799... . (End)

Extensions

Offset corrected by Amiram Eldar, Dec 09 2024
Showing 1-10 of 14 results. Next