A346868 Sum of divisors of the numbers with no middle divisors.
4, 6, 8, 18, 12, 14, 24, 18, 20, 32, 36, 24, 42, 40, 30, 32, 48, 54, 38, 60, 56, 42, 44, 84, 72, 48, 72, 98, 54, 72, 80, 90, 60, 62, 96, 84, 68, 126, 96, 72, 74, 114, 124, 140, 168, 80, 126, 84, 108, 132, 120, 90, 168, 128, 144, 120, 98, 102, 216, 104, 192, 162, 108, 110
Offset: 1
Keywords
Examples
a(4) = 18 because the sum of divisors of the fourth number with no middle divisors (i.e., 10) is 1 + 2 + 5 + 10 = 18. On the other hand we can see that in the main diagonal of every diagram the width is equal to zero as shown below. Illustration of initial terms: m(n) = A071561(n). . n m(n) a(n) Diagram . _ _ _ _ _ _ _ _ _ _ _ _ _ | | | | | | | | | | | | | | | | | | | | | | _ _|_| | | | | | | | | | | | | | | | | | | | | 1 3 4 |_ _| _|_| | | | | | | | | | | | | | | | | | | _ _ _| _|_| | | | | | | | | | | | | | | | | 2 5 6 |_ _ _| _| _ _| | | | | | | | | | | | | | | | _ _ _ _| | _ _|_| | | | | | | | | | | | | | 3 7 8 |_ _ _ _| _ _|_| _ _|_| | | | | | | | | | | | | _| | _ _ _| | | | | | | | | | | _ _ _ _ _| | _|_| _ _ _|_| | | | | | | | | 4 10 18 |_ _ _ _ _ _| _ _| | _ _ _|_| | | | | | | 5 11 12 |_ _ _ _ _ _| | _| _| | _ _ _ _|_| | | | | _ _ _ _ _ _ _| | _| _ _| | | _ _ _ _|_| | | 6 13 14 |_ _ _ _ _ _ _| | _ _| _| _| | | _ _ _ _ _| | 7 14 24 |_ _ _ _ _ _ _ _| | | | _|_| | _ _ _ _ _| | _ _| _ _|_| | | _ _ _ _ _ _ _ _ _| | _ _| _| _|_| 8 17 18 |_ _ _ _ _ _ _ _ _| | |_ _ _| | _ _ _ _ _ _ _ _ _ _| | _ _| _| 9 19 20 |_ _ _ _ _ _ _ _ _ _| | | _ _| _ _ _ _ _ _ _ _ _ _ _| | _ _ _| 10 21 32 |_ _ _ _ _ _ _ _ _ _ _| | | _ _| 11 22 36 |_ _ _ _ _ _ _ _ _ _ _ _| | | 12 23 24 |_ _ _ _ _ _ _ _ _ _ _ _| | | | | _ _ _ _ _ _ _ _ _ _ _ _ _| | 13 26 42 |_ _ _ _ _ _ _ _ _ _ _ _ _ _| .
Crossrefs
Cf. A000203, A067742, A071090, A071561, A071562, A237591, A237593, A245092, A249351, A262626, A281007, A299777, A346864.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors).
Programs
-
Mathematica
s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], 0, Plus @@ d]]; Select[Array[s, 110], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
-
PARI
is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1; \\ A071561 apply(sigma, select(is, [1..150])) \\ Michel Marcus, Aug 19 2021
Comments