cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175926 Sum of divisors of cubes.

Original entry on oeis.org

1, 15, 40, 127, 156, 600, 400, 1023, 1093, 2340, 1464, 5080, 2380, 6000, 6240, 8191, 5220, 16395, 7240, 19812, 16000, 21960, 12720, 40920, 19531, 35700, 29524, 50800, 25260, 93600, 30784, 65535, 58560, 78300, 62400, 138811, 52060, 108600, 95200
Offset: 1

Views

Author

Zak Seidov, Oct 19 2010

Keywords

Comments

The Mobius transform of the sequence is 1, 14, 39 ,112, 155,..., which equals the sequence defined by n*A160889(n). - R. J. Mathar, Apr 15 2011
Zhi-Wei Sun noted that the first 10^7 terms are pairwise distinct, but Noam D. Elkies found that a(48142241) = a(48374911), a(384422506) = a(403764207) and so on. - Zhi-Wei Sun, Jan 08 2014

Crossrefs

Cf. sigma(n^k): A000203 (k=1), A065764 (k=2), this sequence (k=3), A202994 (k=4), A203556 (k=5).

Programs

  • Magma
    [ SumOfDivisors(n^3) : n in [1..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    DivisorSigma[1,#]&/@((Range[40])^3) (* Harvey P. Dale, Aug 30 2015 *)
    f[p_, e_] := (p^(3*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sigma(n^3); \\ Amiram Eldar, Nov 05 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A175926(n): return prod((p**(3*e+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(n) = A000203(n^3). - R. J. Mathar, Mar 31 2011
Multiplicative with a(p^e) = (p^(3e+1)-1)/(p-1). - R. J. Mathar, Mar 31 2011
Sum_{k>=1} 1/a(k) = 1.11535899887110289127674868460900333554265894187008102863022551119560512446... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 0.4732277044... . - Amiram Eldar, Nov 05 2022

A203557 G.f.: exp( Sum_{n>=1} sigma(n^5)*x^n/n ).

Original entry on oeis.org

1, 1, 32, 153, 1145, 5677, 37641, 184685, 1047862, 5196410, 26935148, 129702476, 638028933, 2987297287, 14055935617, 64139004752, 291595380989, 1296984485909, 5732084828019, 24910785830408, 107411267744602, 457008372687439, 1928413165110846, 8046605441623654
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

In general, if m >= 1 and g.f.= exp(Sum_{k>=1} sigma(k^m)*x^k/k), then log(a(n)) ~ (1 + 1/m) * (c*m!)^(1/(m+1)) * n^(m/(m+1)), where c = Product_{primes p} ((p^(m+2) - p^(m+1) + p^m - p) / ((p-1)*(p^(m+1)-1))). - Vaclav Kotesovec, Nov 01 2024

Examples

			G.f.: A(x) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
where the logarithm equals the l.g.f. of A203556:
log(A(x)) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...+ sigma(n^5)*x^n/n +...
		

Crossrefs

Cf. A203556, A000203 (sigma); variants: A000041 (m=1), A156303 (m=2), A156304 (m=3), A202993 (m=4).

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^5)*x^m/m)+x*O(x^n)),n)}

Formula

Logarithmic derivative yields A203556.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A203556(k)*a(n-k) for n > 0. - Seiichi Manyama, Sep 09 2020
log(a(n)) ~ 2^(3/2) * 3^(7/6) * c^(1/6) * n^(5/6) / 5^(5/6), where c = Product_{primes p} (p*(1 + p + p^2 + p^3 + p^5) / (p^6 - 1)) = 1.93252811194652723494722635658171746713... - Vaclav Kotesovec, Nov 01 2024

A344328 Number of divisors of n^5.

Original entry on oeis.org

1, 6, 6, 11, 6, 36, 6, 16, 11, 36, 6, 66, 6, 36, 36, 21, 6, 66, 6, 66, 36, 36, 6, 96, 11, 36, 16, 66, 6, 216, 6, 26, 36, 36, 36, 121, 6, 36, 36, 96, 6, 216, 6, 66, 66, 36, 6, 126, 11, 66, 36, 66, 6, 96, 36, 96, 36, 36, 6, 396, 6, 36, 66, 31, 36, 216, 6, 66, 36, 216, 6, 176, 6, 36, 66, 66, 36
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=5 of A343656.
Cf. A000005, A000584, A082476 (5^omega(n)), A203556.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^5], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^5);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 5*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 5^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 5^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A000584(n)).
Multiplicative with a(p^e) = 5*e+1.
a(n) = Sum_{d|n} 5^omega(d).
G.f.: Sum_{k>=1} 5^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 4/p^s). - Vaclav Kotesovec, Aug 19 2021
Showing 1-3 of 3 results.