cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156304 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 8, 21, 77, 199, 661, 1663, 4852, 12382, 33289, 82877, 213026, 518109, 1279852, 3053404, 7312985, 17093793, 39952528, 91661695, 209709116, 473095589, 1062567288, 2359804486, 5214774263, 11415904502, 24860918943, 53709881911
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Euler transform of A160889. - Vaclav Kotesovec, Nov 01 2024

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +...
log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A156303, A202993, A203557.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1.
log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - Vaclav Kotesovec, Nov 01 2024

A203556 a(n) = sigma(n^5).

Original entry on oeis.org

1, 63, 364, 2047, 3906, 22932, 19608, 65535, 88573, 246078, 177156, 745108, 402234, 1235304, 1421784, 2097151, 1508598, 5580099, 2613660, 7995582, 7137312, 11160828, 6728904, 23854740, 12207031, 25340742, 21523360, 40137576, 21243690, 89572392, 29583456, 67108863
Offset: 1

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

a(n) modulo 6 begins: [1,3,4,1,0,0,0,3,1,0,0,4,0,0,0,1,0,3,0,0,0,0,0,0,1,0,...], in which positions of nonzero residues seem related to squares.

Examples

			L.g.f.: L(x) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...
where the g.f. of A203557 begins:
exp(L(x)) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
		

Crossrefs

Cf. A203557 (exp), A000203 (sigma), A000584, A013664.
Variants: A065764, A175926, A202994.

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 09 2020 *)
    DivisorSigma[1,Range[40]^5] (* Harvey P. Dale, Dec 05 2021 *)
  • PARI
    a(n) = sigma(n^5)

Formula

Logarithmic derivative of A203557.
Multiplicative with a(p^e) = (p^(5*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
From Amiram Eldar, Nov 05 2022: (Start)
a(n) = A000203(A000584(n)) = A000203(n^5).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3220880186... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A319363 a(n) = [x^n] exp(Sum_{k>=1} sigma(k^n)*x^k/k).

Original entry on oeis.org

1, 1, 4, 21, 296, 5677, 291348, 22679763, 3946629792, 1281287791090, 840017139222515, 1068253745514088673, 2745322115165570881474, 14006438682727577999625359, 141884380264686466724199980066, 2897075017978846591982107951045864, 118770312781918226439371316982748736112
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[1, k^n] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
Showing 1-3 of 3 results.