A089388 Duplicate of A055494.
2, 3, 4, 6, 7, 9, 13, 15, 16, 18, 21, 22, 25, 28, 34, 39, 42, 51, 55, 58, 60, 63, 67, 70, 72
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 31*x^6 + 43*x^7 + ...
List([0..50], n->n^2-n+1); # Muniru A Asiru, May 27 2018
a002061 n = n * (n - 1) + 1 -- Reinhard Zumkeller, Dec 18 2013
[ n^2 - n + 1 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 12 2014
A002061 := proc(n) numtheory[cyclotomic](6,n) ; end proc: seq(A002061(n), n=0..20); # R. J. Mathar, Feb 07 2014
FoldList[#1 + #2 &, 1, 2 Range[0, 50]] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3, -3, 1}, {1, 1, 3}, 60] (* Harvey P. Dale, May 25 2011 *) Table[n^2 - n + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 12 2014 *) CoefficientList[Series[(1 - 2x + 3x^2)/(1 - x)^3, {x, 0, 52}], x] (* Robert G. Wilson v, Feb 18 2018 *) Cyclotomic[6, Range[0, 100]] (* Paolo Xausa, Feb 09 2024 *)
makelist(n^2 - n + 1,n,0,55); /* Martin Ettl, Oct 16 2012 */
a(n) = n^2 - n + 1
[n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5. a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
f:= proc(n) local k; for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od end proc: seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014
a(5) = 5 as (5^5 + 1)/(5 + 1) = 1 - 5 + 5^2 - 5^3 + 5^4 = 521 is a prime. a(7) = 3 as (7^3 + 1)/(7 + 1) = 1 - 7 + 7^2 = 43 is a prime.
a(n) = {l=List([8, 27, 32, 64, 125, 243, 324, 343]); for(q=1, #l, if(n==l[q], return(0))); k=2; while(k, s=(n^prime(k)+1)/(n+1); if(ispseudoprime(s), return(prime(k))); k++)} n=2; while(n<361, print1(a(n), ", "); n++) \\ Eric Chen, Nov 25 2014
a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
[n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i,i=1..1000)]); # Robert Israel, Dec 20 2015
Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
[n: n in [1..10000] |IsPrime((n^29 + 1) div (n + 1))];
Select[Range[1, 10000], PrimeQ[(#^29 + 1)/(# + 1)] &]
for(n=1,10000, if(isprime((n^29+1)/(n+1)), print1(n,", ")))
[n: n in [1..10000] |IsPrime((n^97 + 1) div (n + 1))]
Select[Range[1, 10000], PrimeQ[(#^97 + 1)/(# + 1)] &]
for(n=1,10000, if(isprime((n^97+1)/(n+1)), print1(n,", ")))
a(1)=2 because (2^3+1)/(2+1)=9/3=3 is prime, a(8)=34: (34^3+1)/(34+1)=39305/35=1123 is prime.
is(n)=n%2==0 && isprime((n^3+1)/(n+1)) \\ Charles R Greathouse IV, Feb 17 2017
A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
Comments